K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

I/ Max B = -3,1

Min C = 0

Min K = 4,69

II/ X = 0

III/6957

IV/ 1500

22 tháng 6 2017

Tìm GTLN: P= -x2+4x-7

4 tháng 8 2017

a) Ta có:

\(8^5+2^{11}=34816\)

Phân tích ra thừa số nguyên tố số bằng: \(34816=2^{11}.17\)mà \(17⋮17\Leftrightarrow2^{11}.17⋮17\)

\(\Leftrightarrow34816⋮17\Leftrightarrow\left(8^5+2^{11}\right)⋮17\)

b) \(8^7-2^{18}=1835008\)

Phân tích ra thừa số nguyên tố số bằng: \(1835008=2^{18}.7=2^{17}.14\)mà \(14⋮14\Leftrightarrow2^{17}.14⋮14\Leftrightarrow2^{18}.7⋮14\)

\(\Leftrightarrow1835008⋮14\Leftrightarrow\left(8^7-2^{18}\right)⋮14\)

4 tháng 8 2017

Lời giải : a/ Vì 85= (23)5 = 215 nên Ta có: 85+211 = 215+211 = 211.(24+1) = 211.17 chia hết cho 17

               b/  Vì 87 = (23)7 = 221 nên  87- 218 = 221 – 218 = 218(23 – 1) = 218.7 = 217.14 chia hết cho 14

               c/ Vì (9x + 13y) chia hết cho 19 nên 2.(9x + 13y) chia hết cho 19.

                Tức là (18x + 26y) chia hết cho 19 . Ta có 18x + 26y = 19x – x + 19y + 7y = 19(x+y) +(7y – x)     

                chia hết cho 19, mà 19(x+y) chia hết cho 19 nên (7y – x) chia hết cho 19

Chúc Mạnh Châu học tập ngày càng giỏi nhé. Học thật tốt lý thuyết, nhớ công thức và vận dụng công thức linh hoạt.

3 tháng 1 2018

1/ \(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{18}\left(2^3-1\right)=2^{18}.7=2^{17}.2.7=2^{17}.14⋮14\left(đpcm\right)\)

4 tháng 1 2018

đề sai cmnr:v

\(A=\dfrac{1}{3+\left|x-2\right|}\le\dfrac{1}{3}\)

Dấu "=" khi x=2

Bài 1: 

\(A=-\left|x-\dfrac{7}{2}\right|+\dfrac{1}{2}\le\dfrac{1}{2}\forall x\)

Dấu '=' xảy ra khi x=7/2

Bài 2: 

a: \(A=2^{21}-2^{18}=2^{18}\cdot\left(2^3-1\right)=2^{17}\cdot14⋮14\)

b: \(B=2^6\cdot5^6-5^6\cdot5=5^6\cdot59⋮59\)

c: \(C=5^n\cdot25+5^n\cdot5+5^n=5^n\cdot31⋮31\)

2 tháng 1 2017

Bài 1 

số số hạng là 

(99-1) : 1 + 1 = 99 ( số ) 

tỏng là 

(99+1) x 99 : 2= 4950 

đap số 4950 

mấy câu sau tự làm ngại làm lắm ok 

2 tháng 1 2017

Lớp 7 mà bị hỏi bài 9 thì anh thấy quá khó rồi đó.

Gọi \(A\) là số học sinh của lớp. \(A\) chia 5 dư 3 nên \(9A\) chia 5 dư 2.

(CM: \(A=5k+3\Rightarrow9A=45k+27=5\left(9k+5\right)+2\)).

Tương tự, \(A\) chia 7 dư 1 nên \(9A\) chia 7 dư 2.

Vậy \(9A-2\) vừa chia hết cho 5 vừa chia hết cho 7 nên \(9A-2⋮35\).

Do \(40\le A\le60\) nên \(A=43\) thoả, mấy cái còn lại không thoả.

22 tháng 12 2016

Câu 1:

Để A nguyên 

=> 3n + 2 chia hết cho n - 1

=> 3n - 3 + 5 chia hết cho n - 1

Có 3n - 3 chia hết cho n - 1

=> 5 chia hết cho n - 1

=> n - 1 thuộc Ư(5)

=> n - 1 thuộc {1; -1; 5; -5}

=> n thuộc {2; 0; 6; -4}

Câu 2:

\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}\)

\(=2^{18}\left(2^3-1\right)=2^{18}.7\)

\(=2^{16}.2^2.7\)

\(=2^{16}.14\)chia hết cho 14

=> \(8^7-2^{18}\text{ chia hết cho }14\)(Đpcm)

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)

\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)

\(\Rightarrow A_{max}=\frac{3}{4}\)

b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4}\)

Để A max

=>(x+2)^2+4 min

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)

Vậy Min = 4 <=>x=-2

Vậy Max A = 3/4 <=> x=-2

\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow B\ge0+0+1=1\)

Vậy MinB = 1<=>x=-1;y=-3

3 tháng 7 2018

Bài 1:

a) \(A=\left(x-2\right)^2-1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)

\(A=-1\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy \(A_{min}=-1\Leftrightarrow x=2\)

b) \(B=\left(x^2-9\right)^2+\left|y-2\right|+10\)

Ta có: \(\hept{\begin{cases}\left(x^2-9\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\forall x;y}\)

\(B=10\Leftrightarrow\hept{\begin{cases}\left(x^2-9\right)^2=0\\\left|y-2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}}\)

Vậy \(B_{min}=10\Leftrightarrow x=\pm3;y=2\)

Bài 2: \(C=\frac{3}{\left(x-2\right)^2}+5\)

Ta có:  \(\frac{3}{\left(x-2\right)^2}\ge0\forall x\)

\(\Rightarrow\frac{3}{\left(x-2\right)^2}+5\ge5\forall x\)

\(\Rightarrow\) C không có giá trị lớn nhất

Vậy C không có giá trị lớn nhất

d) \(D=-10-\left(x-3\right)^2-\left|y-5\right|\)

Ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x-3\right)^2\le0\forall x\\-\left|y-5\right|\le0\forall y\end{cases}}\Rightarrow-\left(x-3\right)^2-\left|y-5\right|-10\ge-10\forall x;y\)

\(D=-10\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left|y-5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}}\)

Vậy \(D_{m\text{ax}}=-10\Leftrightarrow x=3;y=5\)

3 tháng 7 2018

B1:a,\(\left(x-2\right)^2-1\ge0-1=-1\)

\(\Rightarrow\)GTNN của A là -1 đạt được khi x=2

b,\(\left(x^2-9\right)^2+\left|y-2\right|+10\ge0+0+10=10\)

\(\Rightarrow\)GTNN của B là 10 khi \(\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)

B2:

a,\(\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{0+5}=\frac{3}{5}\)

\(\Rightarrow\)GTLN của C là \(\frac{3}{5}\) đạt được khi x=2

b,\(-10-\left(x-3\right)^2-\left|y-5\right|\le-10-0-0=-10\)

\(\Rightarrow\)GTLN của D là -10 đạt được khi \(\hept{\begin{cases}x=3\\y=5\end{cases}}\)