K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 12 2022

a.

Trong tam giác A'BC ta có: I là trung điểm BA', M là trung điểm BC

\(\Rightarrow IM\) là đường trung bình tam giác A'BC

\(\Rightarrow IM||A'C\)

\(\Rightarrow IM||\left(ACC'A'\right)\)

Do \(A\in\left(AB'M\right)\cap\left(ACC'A'\right)\) và \(\left\{{}\begin{matrix}IM\in\left(AB'M\right)\\A'C\in\left(ACC'A'\right)\\IM||A'C\end{matrix}\right.\)

\(\Rightarrow\) Giao tuyến của (AB'M) và (ACC'A') là đường thẳng qua A và song song A'C

Qua A kẻ đường thẳng d song song A'C

\(\Rightarrow d=\left(AB'M\right)\cap\left(ACC'A'\right)\)

b.

I là trung điểm AB', E là trung điểm AM

\(\Rightarrow IE\) là đường trung bình tam giác AB'M \(\Rightarrow IE||B'M\) (1)

Tương tự ta có IN là đường trung bình tam giác AA'B' \(\Rightarrow IN||A'B'\) (2)

(1);(2) \(\Rightarrow\left(EIN\right)||\left(A'B'M\right)\)

 

NV
21 tháng 12 2022

c.

Trong mp (BCC'B'), qua K kẻ đường thẳng song song B'M lần lượt cắt BC và B'C' tại D và F

\(DF||B'M\Rightarrow DF||IE\Rightarrow DF\subset\left(EIK\right)\)

Trong mp (ABC), nối DE kéo dài cắt AB tại G

\(\Rightarrow G\in\left(EIK\right)\)

Trong mp (A'B'C'), qua F kẻ đường thẳng song song A'C' cắt A'B' tại H

Do IK là đường trung bình tam giác A'BC' \(\Rightarrow IK||A'B'\)

\(\Rightarrow FH||IK\Rightarrow H\in\left(EIK\right)\)

\(\Rightarrow\) Tứ giác DFHG là thiết diện (EIK) và lăng trụ

Gọi J là giao điểm BK và B'M \(\Rightarrow J\) là trọng tâm tam giác B'BC

\(\Rightarrow\dfrac{BJ}{BK}=\dfrac{2}{3}\)

Áp dụng talet: \(\dfrac{BM}{BD}=\dfrac{BJ}{BK}=\dfrac{2}{3}\Rightarrow BD=\dfrac{3}{2}BM=\dfrac{3}{2}.\dfrac{1}{2}BC=\dfrac{3}{4}BC\)

\(\Rightarrow MD=\dfrac{1}{4}BC=\dfrac{1}{2}CM\Rightarrow D\) là trung điểm CM

\(\Rightarrow DE\) là đường trung bình tam giác ACM

\(\Rightarrow DE||AC\Rightarrow DE||FH\)

\(\Rightarrow\) Thiết diện là hình thang

NV
16 tháng 11 2021

Do vai trò của 3 biến là như nhau, không mất tính tổng quát giả sử \(x>y>z\)

Ta có: \(x-z=\left(x-y\right)+\left(y-z\right)\)

Đặt \(\left\{{}\begin{matrix}x-y=a>0\\y-z=b>0\end{matrix}\right.\)  

Do \(x;z\in\left[0;2\right]\Rightarrow x-z\le2\) hay \(a+b\le2\)

Ta có:

\(P=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{4}{a+b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\)

\(P\ge\dfrac{9}{\left(a+b\right)^2}\ge\dfrac{9}{2^2}=\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b\\a+b=2\\\end{matrix}\right.\) \(\Rightarrow a=b=1\) hay \(\left(x;y;z\right)=\left(0;1;2\right)\) và các hoán vị

16 tháng 11 2021

thầy ơi cho em hỏi:

chỗ dấu >= đầu tiên là thầy dùng bđt bunhacoxki đúng không thầy

NV
6 tháng 5 2021

Qua D kẻ đường thẳng song song AC cắt BA kéo dài tại E

\(\Rightarrow BE=2BA=2a\)

\(AC||DE\Rightarrow AC||\left(SDE\right)\Rightarrow d\left(AC;SD\right)=d\left(AC;\left(SDE\right)\right)=d\left(A;\left(SDE\right)\right)\)

\(AE=AD=a\Rightarrow\Delta ADE\) vuông cân tại A

Gọi I là trung điểm DE \(\Rightarrow AI\perp DE\Rightarrow DE\perp\left(SAI\right)\)

Trong mp (SAI), kẻ \(AJ\perp SI\Rightarrow AJ\perp\left(SDE\right)\Rightarrow AJ=d\left(A;\left(SDE\right)\right)\)

\(AI=\dfrac{AD}{2}=\dfrac{\sqrt{AE^2+AD^2}}{2}=\dfrac{a\sqrt{2}}{2}\)

\(\dfrac{1}{AJ^2}=\dfrac{1}{AI^2}+\dfrac{1}{SA^2}\Rightarrow AJ=\dfrac{AI.SA}{\sqrt{AI^2+SA^2}}=\dfrac{a\sqrt{3}}{3}\)

28 tháng 3 2022

B

28 tháng 3 2022

Ta có : \(u_n=2.3^{n+1}\Rightarrow u_1=2.3^{1+1}=18;u_2=2.3^{2+1}=54\)

\(\Rightarrow q=\dfrac{_{u_2}}{u_1}=\dfrac{54}{18}=3\) . Chọn D 

13 tháng 5 2021

Cảm ơn chị nhiều lắm ạ 

21 tháng 11 2023

A B C D E F M N O I K

Câu 7:

Xét hình bình hành ABCD, gọi O là giao của AC và BD

\(OB=OD=\dfrac{BD}{2}\Rightarrow BD=2OB\) (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Ta có

\(BN=\dfrac{1}{3}BD\left(gt\right)\Rightarrow BN=\dfrac{1}{3}.2OB=\dfrac{2}{3}OB\) 

Xét hbh ABEF, gọi I là giao của AE và BF ta có

\(IA=IE=\dfrac{AE}{2}\Rightarrow AE=2IA\) (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Ta có

\(AM=\dfrac{1}{3}AE\left(gt\right)\Rightarrow AM=\dfrac{1}{3}.2IA=\dfrac{2}{3}IA\) (1)

Xét tg ABF có

\(IB=IF\) (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)  => IA là trung tuyến của tg ABF (2)

Từ (1) và (2) => M là trọng tâm của tg ABF

Gọi K là giao của BM với AF => BK là trung tuyến của tg ABF

\(\Rightarrow BM=\dfrac{2}{3}BK\)

Xét tg BOK có

\(BN=\dfrac{2}{3}OB\left(cmt\right)\Rightarrow\dfrac{BN}{OB}=\dfrac{2}{3}\)

\(BM=\dfrac{2}{3}BK\left(cmt\right)\Rightarrow\dfrac{BM}{BK}=\dfrac{2}{3}\)

\(\Rightarrow\dfrac{BN}{OB}=\dfrac{BM}{BK}=\dfrac{2}{3}\) => MN//OK (Talet đảo trong tam giác) (3)

Xét tg ACF có

BK là trung tuyến của tg ABF (cmt) => KA=KF

Ta có

OA=OC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

=> OK là đường trung bình của tg ACF => OK//CF (4)

Từ (3) và (4) => MN//CF

mà \(CF\in\left(DCEF\right)\)

=> MN//(DCEF)

 

 

 

NV
28 tháng 2 2023

a.

Kẻ \(AE\perp SD\) 

Do \(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\Rightarrow CD\perp AE\)

\(\Rightarrow AE\perp\left(SCD\right)\Rightarrow AE=d\left(A;\left(SCD\right)\right)\)

\(AE=\dfrac{SA.AD}{\sqrt{SA^2+AD^2}}=\dfrac{4a\sqrt[]{5}}{5}\)

\(\left\{{}\begin{matrix}AM\cap\left(SCD\right)=C\\MC=\dfrac{3}{4}AC\end{matrix}\right.\) \(\Rightarrow d\left(M;\left(SCD\right)\right)=\dfrac{3}{4}d\left(A;\left(SCD\right)\right)=\dfrac{3a\sqrt{5}}{5}\)

\(\left\{{}\begin{matrix}MN\cap\left(SCD\right)=S\\NS=\dfrac{1}{2}MS\end{matrix}\right.\) \(\Rightarrow d\left(N;\left(SCD\right)\right)=\dfrac{1}{2}d\left(M;\left(SCD\right)\right)=\dfrac{3a\sqrt{5}}{6}\)

b.

Qua S kẻ tia Sx song song cùng chiều tia DC, trên Sx lấy F sao cho \(SF=DC\)

\(\Rightarrow CDSF\) là hình bình hành \(\Rightarrow CF||SD\Rightarrow\left(SAD\right)||\left(BCF\right)\Rightarrow CD\perp\left(BCF\right)\)

Qua B kẻ \(BG\perp CF\Rightarrow BG\perp\left(SCD\right)\Rightarrow\widehat{BDG}\) là góc giữa BD và (SCD)

SF song song và bằng CD nên SF song song và bằng AB \(\Rightarrow SABF\) là hbh

\(\Rightarrow FB||SA\Rightarrow FB\perp\left(ABCD\right)\) \(\Rightarrow FB\perp BC\)

\(BF=SA=2a\Rightarrow BG=\dfrac{BF.BC}{\sqrt{BF^2+BC^2}}=\dfrac{4a\sqrt{5}}{5}\) 

 \(BD=\sqrt{AB^2+AD^2}=5a\)

\(\Rightarrow sin\widehat{BDG}=\dfrac{BG}{BD}=\dfrac{4\sqrt{5}}{25}\)

NV
28 tháng 2 2023

c.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AD\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AD\perp\left(SAB\right)\)

\(\Rightarrow\widehat{DBA}\) là góc giữa BD và (SAB)

\(tan\widehat{DBA}=\dfrac{AD}{AB}=\dfrac{4}{3}\Rightarrow\widehat{DBA}\)

d.

Từ B kẻ \(BH\perp AC\) (H thuộc AC)

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp BH\)

\(\Rightarrow BH\perp\left(SAC\right)\Rightarrow\widehat{BSH}\) là góc giữa SB và (SAC)

\(BH=\dfrac{AB.BC}{\sqrt{AB^2+BC^2}}=\dfrac{12a}{5}\)

\(\Rightarrow sin\widehat{BSH}=\dfrac{BH}{SB}=\dfrac{12\sqrt{13}}{65}\Rightarrow\widehat{BSH}\)

NV
18 tháng 8 2021

MN là đường trung bình tam giác SAB \(\Rightarrow\) MN song song và bằng 1 nửa AB

Gọi P là trung điểm AD \(\Rightarrow PQ||AB\Rightarrow PQ||MN\Rightarrow P\in\left(MNQ\right)\)

\(\Rightarrow\) MNQP là thiết diện của chóp và (MNQ)

Do MN song song PQ \(\Rightarrow\) MNQP là hình thang

Lại có M, P là trung điểm SA, AD \(\Rightarrow MP=\dfrac{1}{2}SD\)

Tương tự \(NQ=\dfrac{1}{2}SC\Rightarrow MP=NQ=\dfrac{b\sqrt{3}}{2}\)

\(\Rightarrow\) Thiết diện là hình thang cân

\(PQ=AB=a\) ; \(MN=\dfrac{1}{2}PQ=\dfrac{a}{2}\)

Kẻ \(MH\perp PQ\Rightarrow PH=\dfrac{PQ-MN}{2}=\dfrac{a}{4}\)

\(\Rightarrow MH=\sqrt{MP^2-PH^2}=\sqrt{\dfrac{3b^2}{4}-\dfrac{a^2}{16}}\)

\(S=\dfrac{1}{2}\left(MN+PQ\right).MH=\dfrac{3a}{4}.\sqrt{\dfrac{3b^2}{4}-\dfrac{a^2}{16}}\)

NV
18 tháng 8 2021

undefined