Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{A}{x-3}=\dfrac{y-x}{3-x}\left(Đk:x\ne3\right)\)
\(A=\dfrac{\left(x-3\right)\left(y-x\right)}{3-x}=x-y\)
b) \(\dfrac{5x}{x+1}=\dfrac{Ax\left(x-1\right)}{\left(1-x\right)\left(x+1\right)}\left(Đk:x\ne\pm1\right)\)
\(A=\dfrac{5x\left(1-x\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}=-5\)
c) \(\dfrac{4x^2-5x+1}{A}=\dfrac{4x-1}{x+3}\left(Đk:x\ne-3;A\ne0\right)\)
\(A=\dfrac{\left(4x^2-5x+1\right)\left(x+3\right)}{4x-1}=\dfrac{\left(x-1\right)\left(4x-1\right)\left(x+3\right)}{4x-1}\)
\(=\left(x-1\right)\left(x+3\right)=x^2+2x-3\)
3) \(\sqrt{\left(x-2\right)\left(x+1\right)}\) thì (x-2)(x+1)>0
=> x2 -x-2>0
=> x2 - x - \(\dfrac{1}{2}\)- \(\dfrac{3}{2}\)>0
= (x+\(\dfrac{1}{4}\))2 - 3/2 >0
=> x+ 1/4>3/2
=> x>5/4
4) Có x đâu mà tìm bạn??
Bài 6:
a: Xét tứ giác DEBF có
DE//BF
DE=BF
Do đó: DEBF là hình bình hành
a) \(\dfrac{A}{x-2}=\dfrac{x^2+3x+2}{x^2-4}\)
\(\Leftrightarrow\dfrac{A}{x-2}=\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{A}{x-2}=\dfrac{x+1}{x-2}\Leftrightarrow A=x+1\)
b) \(\dfrac{M}{x-1}=\dfrac{x^2+3x+2}{x+1}\)
\(\Leftrightarrow\dfrac{M}{x-1}=\dfrac{\left(x+1\right)\left(x+2\right)}{x+1}\)
\(\Leftrightarrow\dfrac{M}{x-1}=x+2\Leftrightarrow M=\left(x-1\right)\left(x+2\right)=x^2+x-2\)
a: ĐKXĐ: x<>2
b: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
c: ĐKXĐ; \(x\notin\left\{-1;3\right\}\)
Xét ΔABC có AI là phân giác
nên BI/AB=CI/AC
=>CI/5=2/3
hay CI=10/3
Bài 4:
1)\(A=x^2-12x+7=\left(x^2-2.6x+36\right)-29\)\(=\left(x-6\right)^2-29\ge-29;\forall x\)
\(\Rightarrow A_{min}=-29\Leftrightarrow x-6=0\Leftrightarrow x=6\)
2)\(B=x^2+x+2=\left(x^2+2.\dfrac{1}{2}.x+\dfrac{1}{4}\right)+\dfrac{7}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\)\(\ge\dfrac{7}{4};\forall x\)
\(\Rightarrow B_{min}=\dfrac{7}{4}\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)
3)\(C=\dfrac{1-4x}{x^2}=\dfrac{4x^2-4x+1-4x^2}{x^2}\)\(=\dfrac{\left(2x-1\right)^2}{x^2}-4\ge-4;\forall x\)
\(\Rightarrow C_{min}=-4\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
4)\(D=x+y\)
Áp dụng bđt cosi có: \(D=x+y\ge2\sqrt{xy}=2\sqrt{25}=10\)
\(\Rightarrow D_{min}=10\Leftrightarrow\left\{{}\begin{matrix}x=y\\xy=25\end{matrix}\right.\)\(\Leftrightarrow x=y=5\)
5) \(E=x^3+y^3\)\(=\left(x+y\right)^3-3xy\left(x+y\right)=8-6xy\)
Có \(\left(x+y\right)^2\ge4xy\) \(\Leftrightarrow4\ge4xy\Leftrightarrow xy\le1\) \(\Rightarrow-xy\ge-1\)
\(\Rightarrow E=8-6xy=8+6.\left(-xy\right)\ge8+6.-1=2\)
\(\Rightarrow E_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x+y=2\end{matrix}\right.\)\(\Leftrightarrow x=y=1\)
6) \(F=x^4+\left(3-x\right)^2\)\(=x^4+x^2-6x+9=\left(x^4-2x^2+1\right)+\left(3x^2-6x+3\right)+5\)\(=\left(x^2-1\right)^2+3\left(x-1\right)^2+5\ge5;\forall x\)
\(\Rightarrow F_{min}=5\Leftrightarrow\left\{{}\begin{matrix}x^2-1=0\\x-1=0\end{matrix}\right.\)\(\Rightarrow x=1\)
\(A=8x-x^2=16-\left(x^2-8x+16\right)=16-\left(x-4\right)^2\le16;\forall x\)
\(\Rightarrow A_{max}=16\Leftrightarrow x-4=0\Leftrightarrow x=4\)
\(B=12x-4x^2-5\)\(=4-\left(4x^2-2.3.2x+9\right)=4-\left(2x-3\right)^2\le4;\forall x\)
\(\Rightarrow B_{max}=4\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)
\(C=\dfrac{2x^2+9}{x^2+4}=\dfrac{2\left(x^2+4\right)}{x^2+4}+\dfrac{1}{x^2+4}=2+\dfrac{1}{x^2+4}\)
Có \(x^2+4\ge4;\forall x\) \(\Rightarrow\dfrac{1}{x^2+4}\le\dfrac{1}{4}\) \(\Rightarrow C\le\dfrac{1}{4}+2=\dfrac{9}{4}\)
\(\Rightarrow C_{max}=\dfrac{9}{4}\Leftrightarrow x^2=0\Leftrightarrow x=0\)