giúp em bài này với ạ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2020

Sao lạ thế nhỉ, áp cái được luôn?

\(2a+\frac{b}{a}+\frac{c}{b}\ge3\sqrt[3]{2a.\frac{b}{a}.\frac{c}{b}}=3\sqrt[3]{2c}\)

Đẳng thức tự xét.

18 tháng 10 2020
RD
TOI LOVE  
  
  
  
  
13 tháng 7 2016

a) 6x^2-11x+3                              b)2x^2+3x-27                      c)3x^2-8x+4

= 6x^2-2x-9x+3                            =2x^2-6x+9x-27                    =3x^2-6x-2x+4

=2x(3x-1)-3(3x-1)                         =2x(x-3)+9(x-3)                      =3x(x-2)-2(x-2)

=(2x-3)(3x-1)                               =(2x+9)(x-3)                           =(3x-2)(x-2)      

9 tháng 12 2020

Đặt biểu thức cần tính là A

Đặt B=1+22+32+42+...+1002=1+2(1+1)+3(2+1)+4(3+1)+...+100(99+1)

B=1+1.2+2+2.3+3+3.4+4+...+99.100+100=(1+2+3+4+...+100)+(1.2+2.3+3.4+...+99.100)

Đặt C=1.2+2.3+3.4+...+99.100 => 3.C=1.2.3+2.3.3+3.4.3+...+99.100.3=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)

3.C=1.2.3-1.2.3+2.3.4-2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=99.100.101 => C=33.100.101

Đặt \(D=1+2+3+4+...+100=\frac{100\left(1+100\right)}{2}=5050.\)

=> B=D+C=5050+33.100.101

A=(22+42+62++82+...+1002)-(1+32+52+72+...+992)

Đặt E=22+42+62+82+...+1002=22.(1+22+32+42+...+502)=22.[1+2.(1+1)+3(2+1)+4(3+1)+...+50(49+1)]

E=22.(1+1.2+2+2.3+3+3.4+4+...+49.50+50)=22.[(1+2+3+...+50)+(1.2+2.3+3.4+...+49.50] Tính tương tự như C và D

=> \(E=2^2.\left(\frac{50.\left(1+50\right)}{2}+\frac{49.50.51}{3}\right)=2^2.\left(1275+17.49.50\right)\)

Mặt khác ta có

B=(1+32+52+72+...+992)+(22+42+62+82+...+1002)=(1+32+52+72+...+992)+E => 1+32+52+72+...+992=B-E

=> A=E-(B-E)=2.E-B

\(\Rightarrow A=2^3\left(1275+17.49.50\right)-\left(5050+33.100.101\right)\)

2 tháng 7 2018

Ta có: a+b=-5

<=>(a+b)2=25

<=>a2+2ab+b2=25

<=>a2+b2+12=25

<=>a2+b2=17

Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Thay a+b=-5,ab=6,a2+b2=17 vào biểu thức trên ta được:

\(-5\left(17-6\right)=-5.11=-55\)

2 tháng 7 2018

ta có

\(a+b=5\)

=>\(\left(a+b\right)^2=25\)

=>\(a^2+2ab+b^2=25\)

=>\(a^2+2.6+b^2=25\)

=>\(a^2+12+b^2=25\)

=>\(a^2+b^2=17\)

ta có

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

thay \(a+b=-5;ab=6;a^2+b^2=17\) vào bt trên ,ta có

\(-5\left(17-6\right)=-5.11=-55\)

vậy \(a^3+b^3=-55\)

9 tháng 2 2020

SIêu nhân henshin! kkk

9 tháng 2 2020

\(102=x^2+y^2+52\)

\(=\left(x^2+16\right)+\left(y^2+36\right)\)

\(\ge8\left|x\right|+12\left|y\right|\ge8x+12y=4A\)

\(\Rightarrow A\le26\) tại x=4;y=6

Không chắc:v Nếu có thêm dấu giá trị tuyệt đối nữa thì ko dùng cosi được thì phải

26 tháng 4 2020

\(a,\frac{x+2}{6}-\frac{8x+1}{3}=\frac{2-5x}{2}-6\)

\(\Leftrightarrow\frac{x+2}{6}-\frac{\left(8x+1\right)2}{6}=\frac{\left(2-5x\right)3}{6}-\frac{36}{6}\)

=> x + 2 - 16x - 2 = 6 - 15x - 36

<=> x - 16x + 15x = 6 -36 + 2 - 2

<=> 0x = -30

Phương trình vô ngiệm

b, 11 - ( x + 2) = 3(x + 1)

<=> 11 - x - 2= 3x + 3

<=> -x - 3x = 3 - 11 + 2

<=> -4x = -6

<=> x = \(\frac{3}{2}\) 

C,  tương tự a

26 tháng 4 2020

c) ĐKXĐ: x \(\ne\)0 và x \(\ne\)-1

Ta có: \(\frac{x+3}{x+1}+\frac{x+2}{x}=2\)

=> \(x\left(x+3\right)+\left(x+1\right)\left(x+2\right)=2x\left(x+1\right)\)

<=> x2 + 3x + x2 + 3x + 2 = 2x2 + 2x

<=> 2x2 + 6x + 2 - 2x2 - 2x = 0

<=> 4x + 2 = 0

<=> 4x = -2

<=> x = -1/2 (tm)

Vậy S = {-1/2}

22 tháng 8 2018

ARMY (.) nha

3 tháng 8 2016

đề yêu cầu cái j

29 tháng 8
  • Nhận xét các tam giác vuông cân:
    • \(\triangle A B D\) vuông cân tại \(B\) nên ta có:
      \(\overset{\rightarrow}{B D} = \overset{\rightarrow}{A B}\) quay đi \(90^{\circ}\).
    • \(\triangle A C E\) vuông cân tại \(C\) nên ta có:
      \(\overset{\rightarrow}{C E} = \overset{\rightarrow}{A C}\) quay đi \(90^{\circ}\).
  • Xét phép quay:
    Thực hiện phép quay \(Q\) tâm \(A\), góc \(90^{\circ}\).
    • \(B \rightarrowtail D\) (vì \(\triangle A B D\) vuông cân tại \(B\)).
    • \(C \rightarrowtail E\) (vì \(\triangle A C E\) vuông cân tại \(C\)).
    Suy ra: phép quay \(Q\) biến đoạn thẳng \(B C\) thành đoạn \(D E\).
  • Hệ quả:
    • \(M\) là trung điểm của \(D E\).
    • Gọi \(N\) là trung điểm của \(B C\).
      Do phép quay bảo toàn trung điểm ⇒ \(Q \left(\right. N \left.\right) = M\).
    Nghĩa là: \(M\) là ảnh của \(N\) qua phép quay \(90^{\circ}\) tâm \(A\).
  • Chứng minh tam giác vuông cân:
    • \(Q\) là phép quay \(90^{\circ}\), nên \(\overset{\rightarrow}{A M} = Q \left(\right. \overset{\rightarrow}{A N} \left.\right)\).
    • Suy ra \(\angle M A N = 90^{\circ}\).
    • Từ đó, tứ giác \(A M C N\) là hình chữ nhật (vì \(M , N\) đối xứng nhau qua phép quay).
    • Vậy \(\overset{\rightarrow}{M C} \bot \overset{\rightarrow}{N B}\). Mà \(N\) là trung điểm \(B C\), nên \(M B = M C\).
    Do đó, \(\triangle M B C\) vuông cân tại \(M\).
29 tháng 8

bn ơi

mik chx học đến đó ạ (┬┬﹏┬┬)