Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sao lạ thế nhỉ, áp cái được luôn?
\(2a+\frac{b}{a}+\frac{c}{b}\ge3\sqrt[3]{2a.\frac{b}{a}.\frac{c}{b}}=3\sqrt[3]{2c}\)
Đẳng thức tự xét.
Đặt biểu thức cần tính là A
Đặt B=1+22+32+42+...+1002=1+2(1+1)+3(2+1)+4(3+1)+...+100(99+1)
B=1+1.2+2+2.3+3+3.4+4+...+99.100+100=(1+2+3+4+...+100)+(1.2+2.3+3.4+...+99.100)
Đặt C=1.2+2.3+3.4+...+99.100 => 3.C=1.2.3+2.3.3+3.4.3+...+99.100.3=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3.C=1.2.3-1.2.3+2.3.4-2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=99.100.101 => C=33.100.101
Đặt \(D=1+2+3+4+...+100=\frac{100\left(1+100\right)}{2}=5050.\)
=> B=D+C=5050+33.100.101
A=(22+42+62++82+...+1002)-(1+32+52+72+...+992)
Đặt E=22+42+62+82+...+1002=22.(1+22+32+42+...+502)=22.[1+2.(1+1)+3(2+1)+4(3+1)+...+50(49+1)]
E=22.(1+1.2+2+2.3+3+3.4+4+...+49.50+50)=22.[(1+2+3+...+50)+(1.2+2.3+3.4+...+49.50] Tính tương tự như C và D
=> \(E=2^2.\left(\frac{50.\left(1+50\right)}{2}+\frac{49.50.51}{3}\right)=2^2.\left(1275+17.49.50\right)\)
Mặt khác ta có
B=(1+32+52+72+...+992)+(22+42+62+82+...+1002)=(1+32+52+72+...+992)+E => 1+32+52+72+...+992=B-E
=> A=E-(B-E)=2.E-B
\(\Rightarrow A=2^3\left(1275+17.49.50\right)-\left(5050+33.100.101\right)\)
:v a giúp e nè :P
\(x^5-x=2000\)
\(\Leftrightarrow x.\left(x^4-1\right)=2000\)
\(\Leftrightarrow x.\left(x^2-1\right).\left(x^2+1\right)=2000\)
\(\Leftrightarrow x.\left(x-1\right).\left(x+1\right).\left(x^2+1\right)=2000\)
vì VP chia hết cho 3 mà 2000 ko chia hết cho 3
Vậy....
\(102=x^2+y^2+52\)
\(=\left(x^2+16\right)+\left(y^2+36\right)\)
\(\ge8\left|x\right|+12\left|y\right|\ge8x+12y=4A\)
\(\Rightarrow A\le26\) tại x=4;y=6
Không chắc:v Nếu có thêm dấu giá trị tuyệt đối nữa thì ko dùng cosi được thì phải
Ta có: a+b=-5
<=>(a+b)2=25
<=>a2+2ab+b2=25
<=>a2+b2+12=25
<=>a2+b2=17
Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
Thay a+b=-5,ab=6,a2+b2=17 vào biểu thức trên ta được:
\(-5\left(17-6\right)=-5.11=-55\)
ta có
\(a+b=5\)
=>\(\left(a+b\right)^2=25\)
=>\(a^2+2ab+b^2=25\)
=>\(a^2+2.6+b^2=25\)
=>\(a^2+12+b^2=25\)
=>\(a^2+b^2=17\)
ta có
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
thay \(a+b=-5;ab=6;a^2+b^2=17\) vào bt trên ,ta có
\(-5\left(17-6\right)=-5.11=-55\)
vậy \(a^3+b^3=-55\)
\(a,\frac{x+2}{6}-\frac{8x+1}{3}=\frac{2-5x}{2}-6\)
\(\Leftrightarrow\frac{x+2}{6}-\frac{\left(8x+1\right)2}{6}=\frac{\left(2-5x\right)3}{6}-\frac{36}{6}\)
=> x + 2 - 16x - 2 = 6 - 15x - 36
<=> x - 16x + 15x = 6 -36 + 2 - 2
<=> 0x = -30
Phương trình vô ngiệm
b, 11 - ( x + 2) = 3(x + 1)
<=> 11 - x - 2= 3x + 3
<=> -x - 3x = 3 - 11 + 2
<=> -4x = -6
<=> x = \(\frac{3}{2}\)
C, tương tự a
c) ĐKXĐ: x \(\ne\)0 và x \(\ne\)-1
Ta có: \(\frac{x+3}{x+1}+\frac{x+2}{x}=2\)
=> \(x\left(x+3\right)+\left(x+1\right)\left(x+2\right)=2x\left(x+1\right)\)
<=> x2 + 3x + x2 + 3x + 2 = 2x2 + 2x
<=> 2x2 + 6x + 2 - 2x2 - 2x = 0
<=> 4x + 2 = 0
<=> 4x = -2
<=> x = -1/2 (tm)
Vậy S = {-1/2}