K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 11 2021

Do vai trò của 3 biến là như nhau, không mất tính tổng quát giả sử \(x>y>z\)

Ta có: \(x-z=\left(x-y\right)+\left(y-z\right)\)

Đặt \(\left\{{}\begin{matrix}x-y=a>0\\y-z=b>0\end{matrix}\right.\)  

Do \(x;z\in\left[0;2\right]\Rightarrow x-z\le2\) hay \(a+b\le2\)

Ta có:

\(P=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{4}{a+b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\)

\(P\ge\dfrac{9}{\left(a+b\right)^2}\ge\dfrac{9}{2^2}=\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b\\a+b=2\\\end{matrix}\right.\) \(\Rightarrow a=b=1\) hay \(\left(x;y;z\right)=\left(0;1;2\right)\) và các hoán vị

16 tháng 11 2021

thầy ơi cho em hỏi:

chỗ dấu >= đầu tiên là thầy dùng bđt bunhacoxki đúng không thầy

24 tháng 8 2021

1.

Hàm số xác định khi:

\(\left\{{}\begin{matrix}sinx\ne0\\cosx-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne k2\pi\end{matrix}\right.\Leftrightarrow x\ne k\pi\)

2.

Hàm số xác định khi:

\(cosx\ne-1\Leftrightarrow x\ne\pi+k2\pi\)

3. 

\(cosx+1\ge0\Rightarrow\) Hàm số xác định với mọi x

4.

Hàm số xác định khi:

\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)

5.

Hàm số xác định khi:

\(sin^2x-cos^2x\ne0\Leftrightarrow-cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

6.

Hàm số xác định khi:

\(cos3x-cosx\ne0\Leftrightarrow cos3x\ne cosx\Leftrightarrow3x\ne\pm x+k2\pi\Leftrightarrow\left[{}\begin{matrix}x\ne k\pi\\x\ne\dfrac{k\pi}{2}\end{matrix}\right.\)

 

\(sin^2x-cos^2x\ne0\Leftrightarrow-cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

21 tháng 11 2023

A B C D E F M N O I K

Câu 7:

Xét hình bình hành ABCD, gọi O là giao của AC và BD

\(OB=OD=\dfrac{BD}{2}\Rightarrow BD=2OB\) (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Ta có

\(BN=\dfrac{1}{3}BD\left(gt\right)\Rightarrow BN=\dfrac{1}{3}.2OB=\dfrac{2}{3}OB\) 

Xét hbh ABEF, gọi I là giao của AE và BF ta có

\(IA=IE=\dfrac{AE}{2}\Rightarrow AE=2IA\) (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Ta có

\(AM=\dfrac{1}{3}AE\left(gt\right)\Rightarrow AM=\dfrac{1}{3}.2IA=\dfrac{2}{3}IA\) (1)

Xét tg ABF có

\(IB=IF\) (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)  => IA là trung tuyến của tg ABF (2)

Từ (1) và (2) => M là trọng tâm của tg ABF

Gọi K là giao của BM với AF => BK là trung tuyến của tg ABF

\(\Rightarrow BM=\dfrac{2}{3}BK\)

Xét tg BOK có

\(BN=\dfrac{2}{3}OB\left(cmt\right)\Rightarrow\dfrac{BN}{OB}=\dfrac{2}{3}\)

\(BM=\dfrac{2}{3}BK\left(cmt\right)\Rightarrow\dfrac{BM}{BK}=\dfrac{2}{3}\)

\(\Rightarrow\dfrac{BN}{OB}=\dfrac{BM}{BK}=\dfrac{2}{3}\) => MN//OK (Talet đảo trong tam giác) (3)

Xét tg ACF có

BK là trung tuyến của tg ABF (cmt) => KA=KF

Ta có

OA=OC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

=> OK là đường trung bình của tg ACF => OK//CF (4)

Từ (3) và (4) => MN//CF

mà \(CF\in\left(DCEF\right)\)

=> MN//(DCEF)

 

 

 

3 tháng 10 2021

2sin^2(2x+pi/3)-6sin(x+pi/6)+cos(x+pi/6)+2=0

A,C đúng

NV
7 tháng 11 2021

\(\Leftrightarrow sinx\left[m-1+2cosx\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=\dfrac{1-m}{2}\end{matrix}\right.\)

\(sinx=0\Rightarrow x=k\pi\) có đúng 1 nghiệm \(x=\pi\) trên khoảng đã cho

\(\Rightarrow cosx=\dfrac{1-m}{2}\) có 2 nghiệm trên \(\left(0;2\pi\right)\)

\(\Rightarrow-1< \dfrac{1-m}{2}< 1\)

\(\Rightarrow-1< m< 3\Rightarrow m=\left\{0;1;2\right\}\) có 3 giá trị

a: SA=SB=SC=SD

Đáy là hình vuông ABCD

=>S.ABCD là hình chóp đều

=>SO vuông góc (ABCD)

b: BD vuông góc AC

BD vuông góc SO

=>BD vuông góc (SAC)

=>BD vuông góc SC

\(lim\left(\sqrt[3]{n^3+4}-\sqrt[3]{n^3-1}\right)\)

\(=lim\left(\sqrt[3]{1+\dfrac{4}{n^3}}-\sqrt[3]{1-\dfrac{1}{n^3}}\right)=\sqrt[3]{1}-\sqrt[3]{1}=0\)

20 tháng 1 2023

Còn cách giải chi tiết hơn không ạ như này e chưa hiểu lắm