Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c.
Gọi E là trung điểm AD \(\Rightarrow EM\) là đường trung bình tam giác SAD
\(\Rightarrow\left\{{}\begin{matrix}EM=\dfrac{1}{2}SA=a\\EM||SA\Rightarrow EM\perp\left(ABCD\right)\end{matrix}\right.\)
\(\Rightarrow EC\) là hình chiếu vuông góc của CM lên (ABCD)
\(\Rightarrow\widehat{MCE}\) là góc giữa SM và (ABCD)
\(ED=\dfrac{1}{2}AD=a\Rightarrow EC=\sqrt{CD^2+ED^2}=a\sqrt{2}\)
\(\Rightarrow tan\widehat{MCE}=\dfrac{EM}{EC}=\dfrac{\sqrt{2}}{2}\Rightarrow\widehat{MCE}=...\)
e.
Gọi O là trung điểm BD, qua A kẻ đường thẳng song song BD cắt OE kéo dài tại F
\(\Rightarrow ABOF\) là hình bình hành (2 cặp cạnh đối song song)
\(\Rightarrow\left\{{}\begin{matrix}AF=OB=\dfrac{1}{2}BD\\AF||BD\end{matrix}\right.\)
Lại có MN là đường trung bình tam giác SBD \(\Rightarrow\left\{{}\begin{matrix}MN=\dfrac{1}{2}BD\\MN||BD\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}MN=AF\\MN||AF\end{matrix}\right.\) \(\Rightarrow ANMF\) là hình bình hành
\(\Rightarrow AN||MF\Rightarrow\left(AN;CM\right)=\left(AN;MF\right)=\widehat{CMF}\) nếu nó ko tù hoặc bằng góc bù của nó nếu \(\widehat{CMF}\) là góc tù
Ta có: \(MF=AN=\dfrac{a\sqrt{5}}{2}\) ; \(CM=\sqrt{CE^2+EM^2}=a\sqrt{3}\)
ABOF là hình bình hành nên AODF cũng là hình bình hành \(\Rightarrow E\) là tâm hình bình hành
\(\Rightarrow EF=OF=\dfrac{AB}{2}=\dfrac{a}{2}\)
Gọi G là giao điểm OE và BC \(\Rightarrow FG=EG+EF=a+\dfrac{a}{2}=\dfrac{3a}{2}\)
\(\Rightarrow CF=\sqrt{FG^2+CG^2}=\dfrac{a\sqrt{13}}{2}\)
ĐỊnh lý hàm cos:
\(cos\widehat{CMF}=\dfrac{CM^2+MF^2-CF^2}{2CM.MF}=\dfrac{\sqrt{15}}{15}\Rightarrow\widehat{CMF}\)
a, \(f\left(x\right)=2x^4-x^3+4x^2-x\)
\(\Rightarrow f'\left(x\right)=\left(2x^4-x^3+4x^2-x\right)'\)
\(=\left(2x^4\right)'-\left(x^3\right)'+\left(4x^2\right)'-\left(x\right)'\)
\(=2.4x^3-3x^2+4.2x-1\)
\(=8x^3-3x^2+8x-1\)
b, \(f\left(x\right)=2sinx\)
\(\Rightarrow f'\left(x\right)=\left(2sinx\right)'=2cosx\)
c, \(f\left(x\right)=\dfrac{3x^2+2x-5}{x}\)
\(\Rightarrow f'\left(x\right)=\left(\dfrac{3x^2+2x-5}{x}\right)'\)
\(=\left(3x+2-\dfrac{5}{x}\right)'\)
\(=\left(3x\right)'+\left(2\right)'-\left(\dfrac{5}{x}\right)'\)
\(=3+0+\dfrac{5}{x^2}=\dfrac{5}{x^2}+3\)
cos2x - (2m + 1)cosx + m + 1 = 0
⇔ 2cos2x - (2m + 1).cosx = 0
⇔ \(\left[{}\begin{matrix}cosx=0\left(1\right)\\2cosx=2m+1\left(2\right)\end{matrix}\right.\)
(1) ⇔ \(x=\dfrac{\pi}{2}+k\pi\) với k thuộc Z. Mà \(x\in\left(\dfrac{\pi}{2};2\pi\right)\)
⇒ x = \(\dfrac{3\pi}{2}\)
Như vậy đã có 1 nghiệm trên \(\left(\dfrac{\pi}{2};2\pi\right)\) đó là x = \(\dfrac{3\pi}{2}\). Bây giờ cần tìm m để (2) có 2 nghiệm phân biệt trên \(\left(\dfrac{\pi}{2};2\pi\right)\) và trong 2 nghiệm đó không có nghiệm x = \(\dfrac{3\pi}{2}\). Tức là x = \(\dfrac{3\pi}{2}\) không thỏa mãn (2), tức là
2m + 1 ≠ 0 ⇔ \(m\ne-\dfrac{1}{2}\)
(2) ⇔ \(2.\left(2cos^2\dfrac{x}{2}-1\right)=2m+1\)
⇔ \(4cos^2\dfrac{x}{2}=2m+3\)
Do x \(\in\left(\dfrac{\pi}{2};2\pi\right)\) nên \(\dfrac{x}{2}\in\left(\dfrac{\pi}{4};\pi\right)\) nên cos\(\dfrac{x}{2}\) ∈ \(\left(-1;\dfrac{\sqrt{2}}{2}\right)\)
Đặt cos\(\dfrac{x}{2}\) = t ⇒ t ∈ \(\left(-1;\dfrac{\sqrt{2}}{2}\right)\). Ta được phương trình : 4t2 = 2m + 3
Cần tìm m để [phương trình được bôi đen] có 2 nghiệm t ∈ \(\left(-1;\dfrac{\sqrt{2}}{2}\right)\)
Dùng hàm số bậc 2 là ra. Nhớ kết hợp điều kiện \(m\ne-\dfrac{1}{2}\)
\(\lim\limits\sqrt{n^2-3n+1}=\lim n\sqrt{1-\dfrac{3}{n}+\dfrac{1}{n^2}}=+\infty.\left(1-0+0\right)=+\infty\)