K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: 5 không là số nguyên tố

b: 4+x>=3

c: (căn 3+căn 12)^2 là số vô tỉ

d: Phương trình x^2+2023x=1 có nghiệm

e: 3^2+4^2<>5^2

f: căn 3*căn 27<>9

g: x=1 không là nghiệm của phương trình \(\dfrac{x^2-1}{x-1}=0\)

h: Tổng hai cạnh của một tam giác nhỏ hơn hoặc bằng cạnh còn lại

NV
31 tháng 8 2021

Ủa biểu thức là \(\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\) hay \(\left|\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\right|\) em? Vì vecto không có khái niệm min max, chỉ độ dài vecto mới có min, max thôi

3 tháng 9 2021

dạ, có dấu giá trị tuyệt đối ạ, do em không gõ ra cái dấu đó được nên bị thiếu ạ.

23 tháng 2 2023

Câu 21: B

Câu 22: C

Câu 23: A

Câu 24: D

Câu 25: B

Câu 26: A

Câu 27: B

Câu 28: A

Câu 29: C

Câu 30: C

Câu 31: A

Câu 32: A

Câu 6:

a: Gọi M là trung điểm của BC

\(AM=2a\cdot\dfrac{\sqrt{3}}{2}=a\sqrt{3}\)

\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\cdot AM=2a\sqrt{3}\)

b: 

\(AG=GB=GC=\dfrac{2}{3}\cdot a\sqrt{3}=\dfrac{2a\sqrt{3}}{3}\)

\(\left(\overrightarrow{AB}-\overrightarrow{GC}\right)^2=AB^2+GC^2-2\cdot\overrightarrow{AB}\cdot\overrightarrow{GC}\)

\(=4a^2+\dfrac{4}{9}\cdot3\cdot a^2-2\cdot\overrightarrow{GC}\left(\overrightarrow{GB}-\overrightarrow{GA}\right)\)

\(=AB^2+GC^2-2\cdot\overrightarrow{GC}\cdot\left(\overrightarrow{GB}-\overrightarrow{GA}\right)\)

\(=\dfrac{16}{3}a^2-2\cdot\overrightarrow{GC}\cdot\overrightarrow{GB}+2\cdot\overrightarrow{GC}\cdot\overrightarrow{GA}\)

\(=\dfrac{16}{3}a^2-2\cdot GC\cdot GB\cdot cos120+2\cdot GC\cdot GA\cdot cos120\)

=16/3a^2

=>\(\left|\overrightarrow{AB}-\overrightarrow{GC}\right|=\dfrac{4a}{\sqrt{3}}\)

 

20 tháng 12 2022

Giúp e với ạ e đang cần rất gấp ạ

a: \(\overrightarrow{AB}=\left(-3;-2\right)\)

\(\overrightarrow{AC}=\left(1;-4\right)\)

Vì \(\overrightarrow{AB}< >\overrightarrow{AC}\) nên A,B,C ko thẳng hàng

hay A,B,C lập thành 1 tam giác

b: Gọi M là trung điểm của BC

\(\Leftrightarrow\left\{{}\begin{matrix}x_M=\dfrac{2-\left(-2\right)}{2}=2\\y_M=\dfrac{-1-1}{2}=-1\end{matrix}\right.\)

Vậy: M(2;-1)

A(1;3)

\(AM=\sqrt{\left(2-1\right)^2+\left(-1-3\right)^2}=\sqrt{17}\)