K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2019

a. Số khả năng xuất hiện S mỗi con xúc sắc là 6. Vì vậy số kết quả có thể xảy ra trên mặt xuất hiện của ba con xúc sắc là 6*6*6= 216

Chọn C

31 tháng 12 2018

Gọi B là biến cố: “Tổng số chấm xuất hiện trên bề mặt con súc sắc bằng 12”

Ta thấy

12 = 1 + 5 + 6 = 2 + 4 + 6 = 2 + 5 + 5 = 3 + 3 + 6 = 3 + 4 + 5 = 4 + 4 + 4

Nếu số chấm trên bề mặt 3 con súc sắc khác nhau tức là các trường hợp (1;5;6), (2;4;6), (3;4;5) có 3 ! .3 = 18  cách

Nếu số chấm trên bề mặt 3 con súc sắc có 2 con giống nhau tức là các trường hợp (2;5;5) và (3;3;6) có 3.2 = 6  cách

Nếu số chấm trên bề mặt 3 con súc sắc giống nhau ta có 1 cách gieo duy nhất

 

⇒ n B = 18 + 6 + 1 = 25 . Vậy P B = n B Ω B = 25 216 .

Chọn A

12 tháng 4 2017

b) Biến cố A xảy ra khi mặt có số chấm không nhỏ hơn 2 xuất hiện

Vậy A={2,3,4,5,6}. Chọn phương án là C

20 tháng 5 2017

Chọn B

13 tháng 7 2017

a) Quan sát con súc sắc có 6 mặt ghi số chấm 1,2,3,4,5,6. Vì vậy không gian mẫu Ω={1,2,3,4,5,6}. Chọn đáp án D

19 tháng 5 2019

Đáp án C

Gieo 2 lần ta có 36 kết quả, trong đó có 18 trường hợp ra tổng 2 lần chẵn, 18 trường hợp ra lẻ.

Đến lần gieo thứ 3, ta có

+) Nếu tổng 2 lần trước là chẵn, lần 3 là chẵn thì tổng 3 lần chẵn, suy ra có 3 kết quả

+) Nếu tổng 2 lần trước là lẻ, lần 3 là lẻ thì tổng 3 lần chẵn, suy ra có 3 kết quả

Với 18 lần chẵn và 18 lần được lẻ trong 2 lần gieo trước, số các kết quả thỏa mãn là 18.3 + 18.3 = 108.

29 tháng 8 2018

Đáp án B

Phương pháp: Xác suất của biến cố A là n A n Ω trong đó nA là số khả năng mà biến cố A có thể xảy ra, n Ω  là tất cả các khả năng có thể xảy ra.

Cách giải:  x 2 + b x + c x   +   1   =   0 (*)

Để phương trình (*) vô nghiệm thì phương trình x2 + bx + c = 0 (**) có 2 trường hợp xảy ra:

TH1: PT (**) có 1 nghiệm x = -1 

TH2: PT (**) vô nghiệm 

Vì c là số chấm xuất hiện ở lần gieo thứ 2 nên c ≤ 6   ⇒ b ≤ 2 6   ≈ 4 , 9 .

Mà b là số chấm xuất hiện ở lần giao đầu nên  b   ∈ 1 ; 2 ; 3 ; 4

Với b = 1  ta có: c > 1 4   ⇒ c ∈ 1 ; 2 ; 3 ; 4 ; 5 ; 6  có 6 cách chọn c.

Với b = 2 ta có: c   >   1 ⇒ c ∈ 2 ; 3 ; 4 ; 5 ; 6 có 5 cách chọn c.

Với b = 3 ta có: c   >   9 4   ⇒ c ∈ 3 ; 4 ; 5 ; 6  có 4 cách chọn c.

Với b = 4 ta có: c > 4 => c ∈   5 ; 6 có 2 cách chọn c.

Do đó có 6+5+4+2 = 17 cách chọn (b;c) để phương trình (**) vô nghiệm.

Gieo con súc sắc 2 lần nên số phần tử của không gian mẫu  n Ω   =   6 . 6   =   36

Vậy xác suất đề phương trình (*) vô nghiệm là  1 + 17 36   =   1 2

11 tháng 9 2018

Không gian mẫu Ω = ( b , c ) : 1 ≤ b , c ≤ 6 . Kí hiệu A, B, C là các biến cố cần tìm xác suấtứng với các câu a), b), c). Ta có Δ   =   b 2   −   4 c

a)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c)

 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

20 tháng 2 2017

Đáp án là A.

• Số phần tử của không gian mẫu là n ( Ω )   = 36 .

Gọi A là biến cố thỏa yêu cầu bài toán.

Phương trình x2 + bx + c = 0 có nghiệm khi và chỉ khi ∆   =   b 2   -   4 a c   ≥ 0 ⇔ b 2   ≥   4 a c .

Xét bảng kết quả (L – loại, không thỏa ; N – nhận, thỏa yêu cầu đề bài)

24 tháng 7 2019

Đáp án A

phương trình có 2 nghiệm  

Phương trình có nghiệm lớn hơn 3 khi và chỉ khi  

Suy ra xác suất để con súc sắc xuất hiện mặt b thỏa mãn đề bài là