K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2018

Gọi B là biến cố: “Tổng số chấm xuất hiện trên bề mặt con súc sắc bằng 12”

Ta thấy

12 = 1 + 5 + 6 = 2 + 4 + 6 = 2 + 5 + 5 = 3 + 3 + 6 = 3 + 4 + 5 = 4 + 4 + 4

Nếu số chấm trên bề mặt 3 con súc sắc khác nhau tức là các trường hợp (1;5;6), (2;4;6), (3;4;5) có 3 ! .3 = 18  cách

Nếu số chấm trên bề mặt 3 con súc sắc có 2 con giống nhau tức là các trường hợp (2;5;5) và (3;3;6) có 3.2 = 6  cách

Nếu số chấm trên bề mặt 3 con súc sắc giống nhau ta có 1 cách gieo duy nhất

 

⇒ n B = 18 + 6 + 1 = 25 . Vậy P B = n B Ω B = 25 216 .

Chọn A

20 tháng 5 2017

Chọn B

9 tháng 4 2017

Không gian mẫu là Ω = {1, 2, 3, 4, 5, 6}. Số kết quả có thế có thể có là 6 (hữu hạn); các kết quả đồng khả năng.

Ta có bảng:

b

1

2

3

4

5

6

∆ = b2 - 8

-7

-4

1

8

17

28

a) Phương trình x2 + bx + 2 = 0 có nghiệm khi và chỉ khi ∆ = b2 - 8 ≥ 0 (*). Vì vậy nếu A là biến cố: "Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 có nghiệm"

thì A = {3, 4, 5, 6}, n(A) = 4 và

P(A) = = .

b) Biến cố B: "Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 vô nghiệm" là biến cố A, do đó theo qui tắc cộng xác suất ta có

P(B) = 1 - P(A) = .

c) Nếu C là biến cố: "Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 có nghiệm nguyên" thì C = {3}, vì vậy

P(C) = .



18 tháng 5 2017

Tổ hợp - xác suất

28 tháng 11 2016

2

19 tháng 8 2019

Số phần tử của không gian mẫu là:

Ω = 6 3 = 216 .

A: “số chấm xuất hiện trên 3 con súc sắc đó bằng nhau”.

A = 1 , 1 , 1 ; 2 , 2 , 2 ; 3 , 3 , 3 ; 4 , 4 , 4 ; 5 , 5 , 5 ; 6 , 6 , 6

⇒ n A = 6

Xác suất để số chấm  xuất hiện trên 3 con súc sắc đó bằng nhau  là:

P =    6 216 =    1 36

Chọn đáp án D.

23 tháng 7 2018

18 tháng 5 2017

Tổ hợp - xác suất

2 tháng 1 2023

Số phần tử của không gian mẫu là: `n(Ω)=6`

A: "Số chấm xuất hiện nhỏ hơn ba"

`-> n(A)= 2`

`=> P(A)=(n(Ω))/(n(A))=2/6=1/3`

`=>` A.