Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\sqrt{2x^2-xy}=x-2y+1\left(1\right)\\x^2-3xy+2y^2=0\left(2\right)\end{cases}}\)
Điều kiện bạn tự làm nhé.
Xét PT (2) ta có
\(x^2-3xy+2y^2=0\)
\(\Leftrightarrow\left(x^2-xy\right)+\left(-2xy+2y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=y\\x=2y\end{cases}}\)
Thế x = y vào PT (1) ta được
\(\sqrt{2x^2-x^2}=x-2x+1\)
\(\Leftrightarrow\sqrt{x^2}=1-x\left(0\le x\le1\right)\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=y=\frac{1}{2}\)
Tương tự cho trường hợp còn lại. Nhớ đối chiếu điều kiện để chọn nghiệm.
\(\hept{\begin{cases}x-y=1\\3x+2y=m\end{cases}\Leftrightarrow}\hept{\begin{cases}2x-2y=2\\3x+2y=m\end{cases}}\) \(\Rightarrow5x=m+2\Rightarrow x=\frac{m+2}{5}\)
thay \(y=x-1=\frac{m+2}{5}-1=\frac{m-3}{5}\)
Vì \(\frac{x}{y}=\frac{3}{4}\Rightarrow x=\frac{3y}{4}\Rightarrow\frac{m+2}{5}=3\left(\frac{m-3}{20}\right)\Leftrightarrow m=-17\)
Vậy m = -17
ĐKXĐ: \(x\ge4\)
\(\hept{\begin{cases}\sqrt{x-1}+\sqrt{y^2-2y+4}=4\\\sqrt{x-4}+y=3\left(1\right)\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=4-\sqrt{y^2-2y+4}\\\sqrt{x-4}=3-y\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(\sqrt{x-1}\right)^2=\left(4-\sqrt{y^2-2y+4}\right)^2\\\left(\sqrt{x-4}\right)^2=\left(3-y\right)^2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-1=16-8\sqrt{y^2-2y+4}+y^2-2y+4\\x-4=y^2-6y+9\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-8\sqrt{y^2-2y+4}+y^2-2y+21\\x=y^2-6y+13\end{cases}}\)
\(\Rightarrow y^2-2y+21-8\sqrt{y^2-2y+4}=y^2-6y+13\)
\(\Leftrightarrow4y+8=8\sqrt{y^2-2y+4}\)\(\Leftrightarrow y+2=2\sqrt{y^2-2y+4}\)
\(\Rightarrow\left(y+2\right)^2=\left(2\sqrt{y^2-2y+4}\right)^2\Leftrightarrow y^2+4y+4=4y^2-8y+16\)
\(\Leftrightarrow3y^2-12y+12=0\Leftrightarrow y^2-4y+4=0\Leftrightarrow\left(y-2\right)^2=0\Leftrightarrow y-2=0\Leftrightarrow y=2\)
Thay y=2 vào (1) suy ra \(\sqrt{x-4}+2=3\Leftrightarrow\sqrt{x-4}=1\Leftrightarrow x-4=1\Leftrightarrow x=5\left(tmdk\right)\)
Vậy (x;y)=(5;2)
Để giải phương trình này, ta có thể thực hiện các bước sau:
1. Kết hợp các thuật ngữ tương tự:
x(a+b) + 2y - x - y = 0
(x - x) + (a+b)x + (2y - y) = 0
ax + bx + y = 0
2. Nhóm các thuật ngữ chứa x lại với nhau và nhóm các thuật ngữ chứa y lại với nhau:
(ax + bx) + y = 0
3. Kết hợp các thuật ngữ tương tự:
(a+b)x + y = 0
Vậy, phương trình đã được đơn giản hóa thành (a+b)x + y = 0.