K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2018

         \(x^4+2x^3-2x^2+2x-3=0\)

\(\Leftrightarrow\)\(x^4-x^3+3x^3-3x^2+x^2-x+3x-3=0\)

\(\Leftrightarrow\)\(x^3\left(x-1\right)+3x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x^3+3x^2+x+3\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x+3\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\)    (vì   x^2 + 1 > 0 )

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)

Vậy....

6 tháng 2 2019

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0

\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0

\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0

\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0

\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0

\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0

x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=-1

CÒN CÂU B TỰ LÀM (02042006)

b: x^4+3x^3-2x^2+x-3=0

=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0

=>(x-1)(x^3+4x^2+2x+3)=0

=>x-1=0

=>x=1

3 tháng 2 2019

a) \(x^5+2x^4+3x^3+3x^2+2x+1=0\)

\(\Leftrightarrow x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0\)

\(\Leftrightarrow x^4\left(x+1\right)+x^3\left(x+1\right)+2x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+2x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+x^2+x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2+1\right)=0\)

Dễ thấy \(x^2+x+1>0\forall x;x^2+1>0\forall x\)

\(\Rightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy....

3 tháng 2 2019

b) \(x^4+3x^3-2x^2+x-3=0\)

\(\Leftrightarrow x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0\)

\(\Leftrightarrow x^3\left(x-1\right)+4x^2\left(x-1\right)+2x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+4x^2+2x+3\right)=0\)

...

\(\Leftrightarrow x=1\)

p/s: có bác nào giải đc pt \(x^3+4x^2+2x+3=0\)thì giúp nhé :))

24 tháng 1 2018

\(x^4+2x^3-2x^2+2x-3=0\)

\(\Leftrightarrow x^4-x^3+3x^3-3x^2+x^2-x+3x-3=0\)

\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^3+3x^2+x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[x^2\left(x+3\right)+\left(x+3\right)\right]\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)

30 tháng 8 2021

a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)

TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)

TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)

b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)

c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)

\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)

5 tháng 6 2020

(x - 1)(2x² - 10) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x^2-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{5}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{1;\sqrt{5}\right\}\)
(2x - 7)2 - 6(2x - 7)(x - 3) = 0

\(\Leftrightarrow\left(2x-7\right)\left(2x-7-6x+18\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(11-4x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\11-4x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=7\\4x=11\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=\frac{11}{4}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{\frac{7}{2};\frac{11}{4}\right\}\)
(5x + 3)(x2 + 4) = 0

\(\Leftrightarrow\left[{}\begin{matrix}5x+3=0\\x^2+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=-3\\x^2=-4\left(Loại\right)\end{matrix}\right.\)

\(\Leftrightarrow x=-\frac{3}{5}\)

Vậy phương trình có tập nghiệm là: \(S=\left\{-\frac{3}{5}\right\}\)

5 tháng 6 2020

a)

\(\left(x-1\right)\cdot\left(2x^2-10\right)=0\\ \Leftrightarrow\left(x-1\right)\cdot2\cdot\left(x^2-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x^2-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=\pm\sqrt{5}\end{matrix}\right.\)

b)

\(\left(2x-7\right)^2-6\cdot\left(6x-7\right)\cdot\left(x-3\right)=0\\ \Leftrightarrow\left(2x-7\right)\cdot\left[\left(2x-7\right)-6\cdot\left(x-3\right)\right]=0\\ \Leftrightarrow\left(2x-7\right)\cdot\left(2x-7-6x+18\right)=0\\ \Leftrightarrow\left(2x-7\right)\cdot\left(11-4x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-7=0\\11-4x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=\frac{11}{4}\end{matrix}\right.\)

c)

\(\left(5x+3\right)\cdot\left(x^2+4\right)=0\)

\(\left(x^2+4\right)>0\Rightarrow\left(loại\right)\)

\(\Rightarrow5x+3=0\\ \Rightarrow x=-\frac{3}{5}\)

2 tháng 4 2017

\(x^4-2x^3-x^2-2x+1=0\)

\(\Leftrightarrow x^4-3x^3+x^2+x^3-3x^2+x+x^2-3x+1=0\)

\(\Leftrightarrow x^2\left(x^2-3x+1\right)+x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)=0\)

\(\Leftrightarrow\left(x^2-3x+1\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-3x+1=0\\x^2+x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{3}{2}\right)^2-\frac{5}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\end{cases}}\)

\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2-\frac{5}{4}=0\)\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{5}{4}\)

\(\Leftrightarrow x-\frac{3}{2}=\pm\sqrt{\frac{5}{4}}\)\(\Leftrightarrow x=\pm\frac{\sqrt{5}}{2}+\frac{3}{2}\)

29 tháng 2 2020

\(a, x(x+3)-(2x-1)(x+3)=0\)

\(⇔(x+3)(1-x)=0\)

\(⇔\left[\begin{array}{} x+3=0\\ 1-x=0 \end{array}\right.\)

\(⇔\left[\begin{array}{} x=-3\\ x=1 \end{array}\right.\)

Vậy phương trình có tập nghiệm là S={\(-3; 1\)}

\(b, 3x-5(x+2)=3(4-2x)\)

\(⇔3x-5x-10=12-6x\)

\(⇔3x-5x+6x=12+10\)

\(⇔4x=22\)

\(⇔x=\dfrac{22}{4}\)

Vậy pt có 1 nghiệm là \(x=\dfrac{22}{4}\)

\(c, (4x-3)(5x-6)=(4x-3)(2x-3)\)

\(⇔5x-6=2x-3\)

\(⇔5x-2x=-3+6\)

\(⇔3x=3\)

\(⇔x=1\)

Vậy pt có 1 nghiệm là \(x=1\)

29 tháng 2 2020

Bạn thật tuyệt vời !eoeo