Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2x^3-2x^2+2x-3=0\)
\(\Leftrightarrow\)\(x^4-x^3+3x^3-3x^2+x^2-x+3x-3=0\)
\(\Leftrightarrow\)\(x^3\left(x-1\right)+3x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^3+3x^2+x+3\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\) (vì x^2 + 1 > 0 )
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
Vậy....
a) 5 - (x - 6) = 4(3 - 2x)
<=> 5 - x + 6 = 12 - 8x
<=> -x + 8x = 12 - 11
<=> 7x = 1
<=> x = 1/7
Vậy S = {1/7}
b) 2x(x - 3) + 5(x - 3) = 0
<=> (2x + 5)(x - 3) = 0
<=> \(\orbr{\begin{cases}2x+5=0\\x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=3\end{cases}}\)
Vậy S = {-5/2; 3}
c)ĐK: x \(\ne\)1; x \(\ne\)2
\(\frac{3x-5}{x-2}-\frac{2x-5}{x-1}=1\)
<=> \(\frac{\left(3x-5\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{\left(2x-5\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)}\)
<=> 3x2 - 8x + 5 - 2x2 + 9x - 10 = x2 - 3x + 2
<=> x2 + x - 5 = x2 - 3x + 2
<=> x2 + x - x2 + 3x = 2 + 5
<=> 4x = 7
<=> x = 7/4
Vậy S = {7/4}
\(x^4-2x^3-x^2-2x+1=0\)
\(\Leftrightarrow x^4-3x^3+x^2+x^3-3x^2+x+x^2-3x+1=0\)
\(\Leftrightarrow x^2\left(x^2-3x+1\right)+x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x^2-3x+1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-3x+1=0\\x^2+x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{3}{2}\right)^2-\frac{5}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\end{cases}}\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2-\frac{5}{4}=0\)\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow x-\frac{3}{2}=\pm\sqrt{\frac{5}{4}}\)\(\Leftrightarrow x=\pm\frac{\sqrt{5}}{2}+\frac{3}{2}\)
câu 1:
a)x-1=5-x\(\Leftrightarrow\)x+x=5+1\(\Leftrightarrow\)2x=6\(\Leftrightarrow\)x=3
Vậy tập nghiệm của PT (a) là S={3}
b)3+x=2-x\(\Leftrightarrow\)x+x=2-3\(\Leftrightarrow\)2x=-1\(\Leftrightarrow\)x=-0,5
Vậy tập nghiệm của PT (b) là:S={-0,5}
câu 2:
a) 3x+7=2x-3\(\Leftrightarrow\)3x-2x=-3-7\(\Leftrightarrow\)x=-10
Vậy tập nghiệm của PT (a) là:S={-10}
b)4-(x-2)=(3-2x)\(\Leftrightarrow\)4-x+2=3-2x\(\Leftrightarrow\)-x+2x=-4+3-2\(\Leftrightarrow\)x=-3
Vậy tập nghiệm của PT (b) là:S={-3}
Câu 3:
a)\(\dfrac{5x-4}{2}=\dfrac{16x+1}{7}\Leftrightarrow\dfrac{7\left(5x-4\right)}{14}=\dfrac{2\left(16x+1\right)}{14}\)
\(\Leftrightarrow\)35x-28=32x+2\(\Leftrightarrow\)35x-32x=2+28\(\Leftrightarrow\)3x=30\(\Leftrightarrow\)x=10
Vậy tập nghiệm của PT (a) là :S={10}
b)\(\dfrac{12x+5}{3}=\dfrac{2x-7}{4}\Leftrightarrow\dfrac{4\left(12x+5\right)}{12}=\dfrac{3\left(2x-7\right)}{12}\)
\(\Leftrightarrow\)48x+20=6x-21\(\Leftrightarrow\)48x-6x=-20-21\(\Leftrightarrow\)42x=-41\(\Leftrightarrow\)x=\(-\dfrac{41}{42}\)
Vậy tập nghiệm của PT (b) là:S={\(-\dfrac{41}{42}\)}
mk chỉ giải đc có bài 1 thui nha bn
\(\frac{4}{x-2}+\frac{1}{x+3}=0\)
ĐKXĐ: x ≠ 2 và x ≠ -3
QĐKM:
⇔(x+3)4 + (x-2)1 = 0
⇔4x + 12 + x - 2 = 0
⇔4x + x = -12 + 2
⇔5x = -10
⇔x= -2
S={-2}
\(a.2x^2+7x-9=0\\ \Leftrightarrow2\left(x^2+\frac{7}{2}x-\frac{9}{2}\right)=0\\\Leftrightarrow x^2+\frac{7}{2}x-\frac{9}{2}=0\\ \Leftrightarrow x^2+\frac{9}{2}x-x-\frac{9}{2}=0\\\Leftrightarrow x\left(x+\frac{9}{2}\right)-\left(x+\frac{9}{2}\right)=0\\\Leftrightarrow \left(x-1\right)\left(x+\frac{9}{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+\frac{9}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{9}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;-\frac{9}{2}\right\}\)
\(b.x^2-4x+3=0\\\Leftrightarrow x^2-x-3x+3=0\\ \Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-3\right)=0\\\Rightarrow \left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;3\right\}\)
a) \(\left(x^2+2x+2\right)\left(x^2+2x+3\right)=0\)
<=> \(\orbr{\begin{cases}x^2+2x+2=0\\x^2+2x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+1\right)^2+1=0\left(vl\right)\\\left(x+1\right)^2+2=0\left(vl\right)\end{cases}}\)
=> pt vô nghiệm
b) \(\left(x+3\right)\left(x-3\right)\left(x^2-11\right)+3=2\)
<=> \(\left(x^2-9\right)\left(x^2-11\right)+1=0\)
<=> \(\left(x^2-9\right)^2-2\left(x^2-9\right)+1=0\)
<=> \(\left(x^2-9-1\right)^2=0\)
<=> \(x^2-10=0\)
<=> \(x=\pm\sqrt{10}\)
c) \(\left(x+3\right)^4+\left(x+5\right)^4=2\)
<=> \(\left(x+4-1\right)^4+\left(x+4+1\right)^4=2\)
Đặt x + 4 = a
<=> \(\left(a-1\right)^4+\left(a+1\right)^4=2\)
<=> \(a^4-4a^3+6a^2-4a+1+a^4+4a^3+6a^2+4a+1=2\)
<=> \(a^4+12a^2=0\)
<=> \(a^2\left(a^2+12\right)=0\)
<=> a = 0 (vì a2 + 12 > 0)
Vậy S = {0}
a/
\(9x^2+25y^2+1+30xy-6x-10y+4y^2-20y+25=0\)
\(\Leftrightarrow\left(3x+5y-1\right)^2+\left(2y-5\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y-1=0\\2y-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\frac{23}{6}\\y=\frac{5}{2}\end{matrix}\right.\)
b/
\(4x^2+4y^2+8xy+x^2-2x+1+y^2+2y+1=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
c/
\(y^2-2y+1+2=\frac{6}{x^2+2x+1+3}\)
\(\Leftrightarrow\left(y-1\right)^2+2=\frac{6}{\left(x+1\right)^2+3}\)
Ta có \(VT=\left(y-1\right)^2+2\ge2\)
\(\left(x+1\right)^2+3\ge3\Rightarrow VP=\frac{6}{\left(x+1\right)^2+3}\le\frac{6}{3}=2\)
\(\Rightarrow VT\ge VP\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}y-1=0\\x+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
d/
\(\frac{-9x^2+18x-9-8}{x^2-2x+1+2}=y^2+4y+4-4\)
\(\Leftrightarrow\frac{-9\left(x-1\right)^2-8}{\left(x-1\right)^2+2}=\left(y+2\right)^2-4\)
\(\Leftrightarrow\frac{-9\left(x-1\right)^2-18+10}{\left(x-1\right)^2+2}=\left(y+2\right)^2-4\)
\(\Leftrightarrow-9+\frac{10}{\left(x-1\right)^2+2}=\left(y+2\right)^2-4\)
\(\Leftrightarrow\frac{10}{\left(x-1\right)^2+2}=\left(y+2\right)^2+5\)
Ta có \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{10}{\left(x-1\right)^2+2}\le\frac{10}{2}=5\Rightarrow VT\le5\)
\(\left(y+2\right)^2+5\ge5\Rightarrow VP\ge5\)
\(\Rightarrow VT\le VP\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(x^4+2x^3-2x^2+2x-3=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+x^2-x+3x-3=0\)
\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^3+3x^2+x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x^2\left(x+3\right)+\left(x+3\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)