\(x^3-x^2+2x-9+\sqrt{x-1}=0\) 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2018

a) \(\sqrt{x+3}-\sqrt{x-1}=\sqrt{2x+2}\)

Điều kiện: \(\hept{\begin{cases}x+3\ge0\\x-1\ge0\\2x+2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\ge1\\x\ge-1\end{cases}\Leftrightarrow x\ge1}\)

    \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-1}\right)^2=\left(\sqrt{2x+2}\right)^2\)

     \(\Leftrightarrow x+3-2\sqrt{\left(x+3\right)\left(x-1\right)}+x-1=2x+2\)

     \(\Leftrightarrow2x+2-2\sqrt{\left(x+3\right)\left(x-1\right)}=2x+2\)

     \(\Leftrightarrow-2\sqrt{\left(x+3\right)\left(x-1\right)}=0\)

     \(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(l\right)\\x=1\left(n\right)\end{cases}}\)

Vậy \(S=\left\{1\right\}\)

     

28 tháng 5 2017

Copy trên mạng nè:

Try the following:
  • Use different phrasing or notations
  • Enter whole words instead of abbreviations
  • Avoid mixing mathemaal and other notations
  • Check your spelling
  • Give your input in English
Other tips for using Wolfram|Alpha:
  • Wolfram|Alpha answers specific questions rather than explaining general topics
    Enter "2 cups of sugar", not "nutrition information"
  • You can only get answers about objective facts
    Try "highest mountain", not "most beautiful painting"
  • Only what is known is known to Wolfram|Alpha
    Ask "how many men in Mauritania", not "how many monsters in Loch Ness"
  • Only public information is available
    Request "GDP of France", not "home phone of Michael Jordan"

Input:

 
2 x + 1 + x sqrt(x)^2 + 2 + (x + 1) sqrt(x)^2 + 2 x + 3 = 0

Open code

 
 
 

Result:

x^2 + (x + 1) x + 4 x + 6 = 0
 
 
 

Plot:

 

Open code

 
 
 

Alternate forms:

x (2 x + 5) + 6 = 0

Open code

 
 
2 x^2 + 5 x + 6 = 0

Open code

 
 
-16/23 (x + 5/4)^2 = 1
 
 
 

Complex solutions:

  • Approximate forms
  • Step-by-step solution
x = -1/4 i (sqrt(23) - 5 i)

Open code

 
 
x = 1/4 i (sqrt(23) + 5 i)
 
 
 

Roots in the complex plane:

15 tháng 10 2017

1.

\(x-6\sqrt{x}-\sqrt{x}+6=0\)

\(\Leftrightarrow\left(\sqrt{x}-6\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=36\\x=1\end{cases}}\)

2.

\(\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\\sqrt{x-3}=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}}\)

20 tháng 10 2018

\(1)\) ĐKXĐ : \(x\ge3\)

\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)

Vậy \(x=1\)

\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)

+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta  có : 

\(x-1-x+3=10\)

\(\Leftrightarrow\)\(0=8\) ( loại ) 

+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có : 

\(1-x+x-3=10\)

\(\Leftrightarrow\)\(0=12\) ( loại ) 

Vậy không có x thỏa mãn đề bài 

Chúc bạn học tốt ~ 

PS : mới lp 8 sai đừng chửi nhé :v 

10 tháng 10 2020

5) \(ĐK:x\ge-\frac{3}{2}\)

\(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)

\(\Leftrightarrow\frac{x^3+4x}{2x+7}=\sqrt{2x+3}\Leftrightarrow\frac{x^3+4x}{2x+7}-3=\sqrt{2x+3}-3\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+3x+7\right)}{2x+7}=\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+3x+7}{2x+7}-\frac{2}{\sqrt{2x+3}+3}\right)=0\)

(không có nghiệm thực)

Vậy phương trình có 1 nghiệm duy nhất là 3

10 tháng 10 2020

1) \(Pt\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\)( đk: \(x\le-3,x\ge0\)

Đặt \(t=\sqrt{x^2+3x},t\ge0\)

Pt trở thành: \(-t^2-3t+10=0\Leftrightarrow t=2\left(dot\ge0\right)\)

giải \(\sqrt{x^2+3x}=2\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)

7 tháng 2 2020

Ôn tập Căn bậc hai. Căn bậc ba

NV
7 tháng 2 2020

Bài này lớp 9 chỉ có bình phương và bình phương mới hết nghiệm thôi em.

Giải 1 cách đẹp mắt và triệt để thì cần sử dụng kiến thức 11