Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Copy trên mạng nè:
Try the following:- Use different phrasing or notations
- Enter whole words instead of abbreviations
- Avoid mixing mathemaal and other notations
- Check your spelling
- Give your input in English
- Wolfram|Alpha answers specific questions rather than explaining general topicsEnter "2 cups of sugar", not "nutrition information"
- You can only get answers about objective factsTry "highest mountain", not "most beautiful painting"
- Only what is known is known to Wolfram|AlphaAsk "how many men in Mauritania", not "how many monsters in Loch Ness"
- Only public information is availableRequest "GDP of France", not "home phone of Michael Jordan"
- Approximate forms
- Step-by-step solution
a) \(\sqrt{x+3}-\sqrt{x-1}=\sqrt{2x+2}\)
Điều kiện: \(\hept{\begin{cases}x+3\ge0\\x-1\ge0\\2x+2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\ge1\\x\ge-1\end{cases}\Leftrightarrow x\ge1}\)
\(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-1}\right)^2=\left(\sqrt{2x+2}\right)^2\)
\(\Leftrightarrow x+3-2\sqrt{\left(x+3\right)\left(x-1\right)}+x-1=2x+2\)
\(\Leftrightarrow2x+2-2\sqrt{\left(x+3\right)\left(x-1\right)}=2x+2\)
\(\Leftrightarrow-2\sqrt{\left(x+3\right)\left(x-1\right)}=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(l\right)\\x=1\left(n\right)\end{cases}}\)
Vậy \(S=\left\{1\right\}\)
x= 0.761322463768116,
x= 0.369494467346496,
x=1.57660410301179
5) \(ĐK:x\ge-\frac{3}{2}\)
\(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)
\(\Leftrightarrow\frac{x^3+4x}{2x+7}=\sqrt{2x+3}\Leftrightarrow\frac{x^3+4x}{2x+7}-3=\sqrt{2x+3}-3\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+3x+7\right)}{2x+7}=\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+3x+7}{2x+7}-\frac{2}{\sqrt{2x+3}+3}\right)=0\)
(không có nghiệm thực)
Vậy phương trình có 1 nghiệm duy nhất là 3
1) \(Pt\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\)( đk: \(x\le-3,x\ge0\)
Đặt \(t=\sqrt{x^2+3x},t\ge0\)
Pt trở thành: \(-t^2-3t+10=0\Leftrightarrow t=2\left(dot\ge0\right)\)
giải \(\sqrt{x^2+3x}=2\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)
ĐK : \(2\le x\le4\)
pt <=> \(\sqrt{x-2}+\sqrt{4-x}-\left(2x^2-5x+1\right)=0\)
\(\Leftrightarrow\sqrt{x-2}-1+\sqrt{4-x}-1-\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{x-2}+1}+\frac{3-x}{\sqrt{4-x}+1}-\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[\frac{1}{\sqrt{x-2}+1}-\frac{1}{\sqrt{4-x}+1}-\left(2x+1\right)\right]=0\)
TH1 : x - 3 = 0 <=> x = 3 ( tmđk )
TH2 : \(\frac{1}{\sqrt{x-2}+1}-\frac{1}{\sqrt{4-x}+1}-\left(2x+1\right)=0\)( tự xử lý nhe == , vô nghiệm á )
Vậy pt có nghiệm duy nhất là x = 3
ĐK: `x<=-1 ; x>= 1`
`\sqrt(x^2-1)+\sqrt(x^2-2x+1)=0`
`<=> \sqrt((x-1)(x+1)) + \sqrt((x-1)^2)=0`
`<=> \sqrt(x-1) (\sqrt(x+1) + \sqrt(x-1))=0`
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}+\sqrt{x-1}=0\left(VN\right)\end{matrix}\right.\\ \Leftrightarrow x=1\)
Vậy `S={1}`.
ĐKXĐ : \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
\(\sqrt{x^2-1}+\sqrt{x^2-2x+1}=0\)\(\)
\(\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2-1=0\\x^2-2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\\left(x-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\x=1\end{matrix}\right.\)\(\)
\(\Leftrightarrow x=1\)
Vậy S = {1}
Bài này lớp 9 chỉ có bình phương và bình phương mới hết nghiệm thôi em.
Giải 1 cách đẹp mắt và triệt để thì cần sử dụng kiến thức 11