K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2022

\(x^2\left(x-1\right)^2=\left(2x-1\right)^2+2\)

\(\Leftrightarrow x^2\left(x-1\right)^2=\left[x+\left(x-1\right)\right]^2+2\)

\(\Leftrightarrow x^2\left(x-1\right)^2=4x^2-4x+1+2\)

\(\Leftrightarrow x^2\left(x-1\right)^2-4x\left(x-1\right)-3=0\) (1)

Đặt \(a=x\left(x-1\right)\)

\(x\left(x-1\right)=x^2-x=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

\(ĐK:a^2\ge2\Leftrightarrow\left|a\right|\ge\sqrt{2}\)

\(\left(1\right)\Leftrightarrow a^2-4a-3=0\)

\(\Delta=\left(-4\right)^2-4.\left(-3\right)=16+12=28>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{4+\sqrt{28}}{2}=2+\sqrt{7}\left(tm\right)\\a=\dfrac{4-\sqrt{28}}{2}=2-\sqrt{7}\left(ktm\right)\end{matrix}\right.\)

\(\rightarrow x\left(x-1\right)=2+\sqrt{7}\)

\(\Leftrightarrow x^2-x-\left(2+\sqrt{7}\right)=0\)

\(\Leftrightarrow x=\dfrac{1\pm\sqrt{9+4\sqrt{7}}}{2}\)

Vậy \(S=\left\{\dfrac{1\pm\sqrt{9+4\sqrt{7}}}{2}\right\}\)

 

 

14 tháng 5 2022

=)) khai triển HĐT sai gòi:v \(\left(2x-1\right)^2=4x^2-4x+1\) nha bạn

NV
3 tháng 11 2021

Chú ý:

\(\left(x^2+2x\right)^2+4\left(x+1\right)^2=\left(x^2+2x\right)^2+4\left(x^2+2x+1\right)=\left(x^2+2x\right)^2+4\left(x^2+2x\right)+4\)

\(=\left(x^2+2x+2\right)^2\)

\(x^2+\left(x+1\right)^2+\left(x^2+x\right)^2\)

\(=\left(x^2+x\right)+x^2+x^2+2x+1\)

\(=\left(x^2+x\right)^2+2x^2+2x+1\)

\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)

\(=\left(x^2+x+1\right)^2\)

3 tháng 11 2021

èo =))

NV
20 tháng 8 2021

\(\Leftrightarrow x^4=\left(1-x\right)\left(x^2+2x-2-4x+4\right)\)

\(\Leftrightarrow x^4=\left(1-x\right)\left(x^2+2x-2\right)+\left(2x-2\right)^2\)

\(\Leftrightarrow x^4-\left(2x-2\right)^2+\left(x-1\right)\left(x^2+2x-2\right)=0\)

\(\Leftrightarrow\left(x^2-2x+2\right)\left(x^2+2x-2\right)+\left(x-1\right)\left(x^2+2x-2\right)=0\)

\(\Leftrightarrow\left(x^2+2x-2\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2+2x-2\right)\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)

\(\Leftrightarrow x^2+2x-2=0\) (bấm máy)

NV
27 tháng 7 2021

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)\left(x+y-2\right)=6\\\left(x-1\right)^2+\left(y-1\right)^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)\left(x+y-2\right)=6\\\left(x+y-2\right)^2-2\left(x-1\right)\left(y-1\right)=5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)=v\\x+y-2=u\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}uv=6\\u^2-2v=5\end{matrix}\right.\) \(\Rightarrow u^2-\dfrac{12}{u}=5\)

\(\Rightarrow u^3-5u-12=0\)

\(\Leftrightarrow\left(u-3\right)\left(u^2+3u+4\right)=0\)

\(\Leftrightarrow u=3\Rightarrow v=2\)

\(\Rightarrow\left\{{}\begin{matrix}x+y-2=3\\\left(x-1\right)\left(y-1\right)=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=5-x\\\left(x-1\right)\left(y-1\right)=2\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)\left(5-x-1\right)=2\)

\(\Leftrightarrow...\) em tự hoàn thành bài toán

27 tháng 7 2021

Mình không biết đúng hay không nhưng mình thay vào không đúng á.

5 tháng 10 2021

\(ĐK:-1\le x\le1\\ PT\Leftrightarrow13\left(1-2x^2\right)\sqrt{\left(1-x^2\right)\left(1+x^2\right)}+9\left(1+2x^2\right)\sqrt{\left(1+x^2\right)\left(1-x^2\right)}=0\\ \Leftrightarrow\sqrt{1-x^4}\left(13-26x^2+9+18x^2\right)=0\\ \Leftrightarrow\sqrt{1-x^4}\left(22-8x^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}1-x^4=0\\22-8x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(1+x^2\right)\left(1-x\right)\left(1+x\right)=0\\x^2=\dfrac{22}{8}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{\sqrt{11}}{2}\left(ktm\right)\\x=-\dfrac{\sqrt{11}}{2}\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

NV
15 tháng 3 2022

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-2y^2=2\\xy+x^2=2\end{matrix}\right.\)

Trừ vế cho vế:

\(\Rightarrow3x^2-xy-2y^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(3x+2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x\\y=-\dfrac{3}{2}x\end{matrix}\right.\)

Thế vào pt đầu: \(\left[{}\begin{matrix}2x^2-x^2=1\\2x^2-\left(-\dfrac{3}{2}\right)x^2=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2=1\\-\dfrac{1}{4}x^2=1\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y=1\\x=y=-1\end{matrix}\right.\)

NV
26 tháng 2 2021

\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3-3xy\left(x+y\right)+\left(xy\right)^3+7\left(xy+x+y+1\right)=31\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3+\left(xy\right)^3+7\left(xy+x+y\right)=30\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\) với \(u^2\ge4v\)

\(\Rightarrow\left\{{}\begin{matrix}uv=2\\u^3+v^3+7\left(u+v\right)=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\\left(u+v\right)^3-3uv\left(u+v\right)+7\left(u+v\right)=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\\left(u+v\right)^3+\left(u+v\right)-30=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\u+v=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=2\\v=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\) \(\Leftrightarrow\left(x;y\right)=\left(1;1\right)\)

NV
26 tháng 2 2021

2.

ĐKXĐ: \(0\le x\le\dfrac{3}{2}\)

\(\Leftrightarrow9x\left(3-2x\right)+81+54\sqrt{x\left(3-2x\right)}=49x+25\left(3-2x\right)+70\sqrt{x\left(3-2x\right)}\)

\(\Leftrightarrow9x^2-14x-3+8\sqrt{x\left(3-2x\right)}=0\)

\(\Leftrightarrow9\left(x^2-2x+1\right)-4\left(3-x-2\sqrt{x\left(3-2x\right)}\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2-\dfrac{36\left(x-1\right)^2}{3-x+2\sqrt{x\left(3-2x\right)}}=0\)

\(\Leftrightarrow9\left(x-1\right)^2\left(1-\dfrac{4}{3-x+2\sqrt{x\left(3-2x\right)}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\3-x+2\sqrt{x\left(3-2x\right)}=4\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\sqrt{x\left(3-2x\right)}=x+1\)

\(\Leftrightarrow4x\left(3-2x\right)=x^2+2x+1\)

\(\Leftrightarrow9x^2-10x+1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)

26 tháng 6 2018

Đặt: \(x^2-2x+1=t\left(t\ge0\right)\)

pt <=> \(\left(t+1\right)\left(t-2\right)=2\)

\(\Leftrightarrow t^2-t-4=0\)

\(\Leftrightarrow\left(t^2-2\cdot\dfrac{1}{2}t+\dfrac{1}{4}\right)-\dfrac{17}{4}=0\)

\(\Leftrightarrow\left(t-\dfrac{1}{2}\right)^2=\dfrac{17}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}t-\dfrac{1}{2}=\dfrac{\sqrt{17}}{2}\\t-\dfrac{1}{2}=-\dfrac{\sqrt{17}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{1+\sqrt{17}}{2}\left(tm\right)\\t=\dfrac{1-\sqrt{17}}{2}\left(ktm\right)\end{matrix}\right.\)

Ta có: \(t=\dfrac{1+\sqrt{17}}{2}\)

\(\Rightarrow x^2-2x+1=\dfrac{1+\sqrt{17}}{2}\)

\(\Leftrightarrow\left(x-1\right)^2=\dfrac{1+\sqrt{17}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\sqrt{\dfrac{1+\sqrt{17}}{2}}\\x-1=-\sqrt{\dfrac{1+\sqrt{17}}{2}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{\dfrac{1+\sqrt{17}}{2}}\\x=1-\sqrt{\dfrac{1+\sqrt{17}}{2}}\end{matrix}\right.\)

Vậy pt có 2 nghiệm........................