\(x^4=\left(1-x\right)\left(x^2-2x+2\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 8 2021

\(\Leftrightarrow x^4=\left(1-x\right)\left(x^2+2x-2-4x+4\right)\)

\(\Leftrightarrow x^4=\left(1-x\right)\left(x^2+2x-2\right)+\left(2x-2\right)^2\)

\(\Leftrightarrow x^4-\left(2x-2\right)^2+\left(x-1\right)\left(x^2+2x-2\right)=0\)

\(\Leftrightarrow\left(x^2-2x+2\right)\left(x^2+2x-2\right)+\left(x-1\right)\left(x^2+2x-2\right)=0\)

\(\Leftrightarrow\left(x^2+2x-2\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2+2x-2\right)\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)

\(\Leftrightarrow x^2+2x-2=0\) (bấm máy)

1 tháng 5 2019

Bài 1:

\(\left\{{}\begin{matrix}x+2y=1\\2x^2-5xy=48\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1-2y\left(1\right)\\2x^2-5xy=48\left(2\right)\end{matrix}\right.\)

Thay (1) vào (2)\(\Leftrightarrow2\left(1-2y\right)^2-5\left(1-2y\right)y=48\Leftrightarrow2\left(1-4y+4y^2\right)-5y+10y^2=48\Leftrightarrow2-8y+8y^2-5y+10y^2=48\Leftrightarrow18y^2-13y-46=0\Leftrightarrow\left(y-2\right)\left(18y+23\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}y=2\\y=-\frac{23}{18}\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\x=\frac{32}{9}\end{matrix}\right.\)

Vậy (x;y)={(\(-3;2\));(\(\frac{32}{9};-\frac{23}{18}\))}

Bài 2:

a) Đặt a=x2-1(a\(\ge-1\))

Vậy pt\(\Leftrightarrow a^2-4a=5\Leftrightarrow a^2-4a-5=0\Leftrightarrow\left(a-5\right)\left(a+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a=5\\a=-1\end{matrix}\right.\)(tm)

TH1: a=5\(\Leftrightarrow x^2-1=5\Leftrightarrow x^2=6\Leftrightarrow x=\pm\sqrt{6}\)

TH2: a=-1\(\Leftrightarrow x^2-1=-1\Leftrightarrow x^2=0\Leftrightarrow x=0\)

Vậy S={\(-\sqrt{6};0;\sqrt{6}\)}

b) \(\left(x+2\right)^2-3x-5=\left(1-x\right)\left(1+x\right)\Leftrightarrow x^2+4x+4-3x-5=1-x^2\Leftrightarrow2x^2+x-2=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=\frac{-1+\sqrt{17}}{4}\\x=\frac{-1-\sqrt{17}}{4}\end{matrix}\right.\)

Vậy S={\(\frac{-1+\sqrt{17}}{4};\frac{-1-\sqrt{17}}{4}\)}

c) Đặt a=\(x^2-3x+2\)

Vậy pt\(\Leftrightarrow\left(a+2\right)a=3\Leftrightarrow a^2+2a-3=0\Leftrightarrow\left(a-1\right)\left(a+3\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a=1\\a=-3\end{matrix}\right.\)(tm)

TH1:\(a=1\Leftrightarrow x^2-3x+2=1\Leftrightarrow x^2-3x+1=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=\frac{3+\sqrt{5}}{2}\\x=\frac{3-\sqrt{5}}{2}\end{matrix}\right.\)

TH2: a=-3\(\Leftrightarrow x^2-3x+2=-3\Leftrightarrow x^2-3x+5=0\)(vô nghiệm)

Vậy S=\(\left\{\frac{3+\sqrt{5}}{2};\frac{3-\sqrt{5}}{2}\right\}\)

19 tháng 12 2018

\(x^4+\left(x-1\right)\left(x^2-2x+2\right)=0\)

\(\Leftrightarrow x^4+x^3-3x^2+4x-2=0\)

\(\Leftrightarrow x^2\left(x^2-x+1\right)+2x\left(x^2-x+1\right)-2\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+2x-2\right)=0\)

đến đây tự giải nhé

9 tháng 9 2017

c1 cậu đặt cái trong căn =a

=>pt<=> a^2-2x=2xa-a

c2 cậu đưa về dang a^2=b^2

9 tháng 9 2017

bài 2 nhé 

đặt \(a=\sqrt{x+2}\)

ta có pt<=> 

\(2a^3=3x\left(x+2\right)-x^3\Leftrightarrow2a^3=3xa^2-x^3\)

\(\Leftrightarrow2a^3-3xa^2+x^3=0\Leftrightarrow2a^3-2a^2x+x^2-xa^2=0\)

\(\Leftrightarrow\left(a-x\right)\left(2a^2-ax-x^2\right)\)

13 tháng 2 2020

a) ĐKXD:...

\(pt\Leftrightarrow\left(\sqrt{x+2}+\sqrt{x-2}\right)^2=6-2x\)

\(\Leftrightarrow\sqrt{x+2}+\sqrt{x-2}=\sqrt{6-2x}\)

Đến đây dễ rồi

13 tháng 2 2020

bước đầu bạn làm sai r. nó nằm trong căn nên ko phải bình phương nên ko thể biến đổi thành tổng bình phương được