K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

Đề sai rồi xem lại đi. Đề này thì vô nghiệm rồi còn đâu

TL

Bn alibaba nguyễn nói đúng đấy mong bn đấy t i k cho mik

Hok tốt

7 tháng 3 2018

Ta có vế trái \(={x^2+190x+9025+2} ={(x-95)^2+2}≥ 2\)

Đặt vế vế phải là A

\(=> A^2= {2+ 2\sqrt{(x-94)(96-x)}}\) ≤ 4

=> A ≤ 2

Dấu bằng xảy ra khi và chỉ khi  cả hai vế đều bằng 2 

=> x=2 

Vậy .....

7 tháng 3 2018

Mình ghi nhầm x=94 nha lỗi bàn phím

3 tháng 9 2023

Kiểu dạng bài này là thường dưới căn cùng phép tính để đặt ẩn nên mình nghĩ là \(\sqrt{x+2\sqrt{x-1}}\) ...... mới đúng, còn nếu không phải thì bảo mình nhé và cách làm thì nó cũng giống cách mình làm thôi: )

ĐK: \(x\ge1\)

Đặt \(\sqrt{x-1}=t\left(t\ge0\right)\Rightarrow x=t^2+1\)

PT trở thành:

\(\sqrt{t^2+1+2t}+\sqrt{t^2+1-2t}=t+8\\ \Leftrightarrow\sqrt{\left(t+1\right)^2}+\sqrt{\left(t-1\right)^2}=t+8\\ \Leftrightarrow\left|t+1\right|+\left|t-1\right|=t+8\left(1\right)\)

Với \(0\le t< 1\) có:

(1) \(\Leftrightarrow t+1+1-t-t-8=0\) 

\(\Leftrightarrow-6-t=0\\ \Leftrightarrow t=-6\left(loại\right)\)

Với \(t\ge1\) có:

(1) \(\Leftrightarrow t+1+t-1-t-8=0\)

\(\Leftrightarrow t-8=0\\ \Leftrightarrow t=8\left(nhận\right)\)

\(\Rightarrow x=t^2+1=8^2+1=64+1=65\)

Vậy nghiệm của PT là `x=65`

24 tháng 9 2021

\(ĐK:0< x\le4\)

Đặt \(\sqrt{2+\sqrt{x}}=a>0;\sqrt{2-\sqrt{x}}=b>0\)

\(\Rightarrow a^2+b^2=2+\sqrt{x}+2-\sqrt{x}=4\)

\(PT\Leftrightarrow\dfrac{a^2}{\sqrt{2}+a}+\dfrac{b^2}{\sqrt{2}-b}=\sqrt{2}\\ \Leftrightarrow\dfrac{a^2\sqrt{2}-a^2b+b^2\sqrt{2}+ab^2}{2+\sqrt{2}\left(a-b\right)-ab}=\sqrt{2}\\ \Leftrightarrow\sqrt{2}\left(a^2+b^2\right)+ab\left(b-a\right)=2\sqrt{2}+2\left(a-b\right)-\sqrt{2}ab\\ \Leftrightarrow4\sqrt{2}-ab\left(a-b\right)=2\sqrt{2}+2\left(a-b\right)-\sqrt{2}ab\\ \Leftrightarrow\left(2+ab\right)\left(a-b\right)=2\sqrt{2}+\sqrt{2}ab\\ \Leftrightarrow\left(2+ab\right)\left(a-b\right)-\sqrt{2}\left(2+ab\right)=0\\ \Leftrightarrow\left(a-b-\sqrt{2}\right)\left(2+ab\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}ab=-2\\a-b=\sqrt{2}\end{matrix}\right.\)

Xét \(\left\{{}\begin{matrix}ab=-2\\a^2+b^2=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=8\\\left(a+b\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=\pm2\sqrt{2}\\a+b=0\end{matrix}\right.\left(loại.vì.a>0;b\ge0\right)\)

Xét \(\left\{{}\begin{matrix}a-b=\sqrt{2}\\a^2+b^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+\sqrt{2}\\b^2+2\sqrt{2}b+2+b^2=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+\sqrt{2}\\2b^2+2\sqrt{2}b-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+\sqrt{2}\\b^2+b\sqrt{2}-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=b+\sqrt{2}\\\left[{}\begin{matrix}b=\dfrac{\sqrt{6}-\sqrt{2}}{2}\\b=\dfrac{-\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\left(sd.\Delta\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+\sqrt{2}\\b=\dfrac{\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\left(b\ge0\right)\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{\sqrt{6}+\sqrt{2}}{2}\\b=\dfrac{\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2+\sqrt{x}}=\dfrac{\sqrt{6}+\sqrt{2}}{2}\\\sqrt{2-\sqrt{x}}=\dfrac{\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)

Tới đây dễ r nha

 

NV
20 tháng 1

ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)

\(\Leftrightarrow\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|=\left|2\sqrt{x+1}-2\right|\)

Áp dụng BĐT trị tuyệt đối:

\(\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|\ge\left|\sqrt{x+1}+1+\sqrt{x+1}-3\right|=\left|2\sqrt{x+1}-2\right|\)

Dấu "=" xảy ra khi và chỉ khi \(\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}-3\right)\ge0\)

\(\Leftrightarrow\sqrt{x+1}-3\ge0\)

\(\Leftrightarrow x+1\ge9\)

\(\Leftrightarrow x\ge8\)

21 tháng 6 2021

`ĐK:x>=2`

`pt<=>sqrt{(x-1)(x-2)}+sqrt{x+3}=sqrt{x-2}+sqrt{(x-1)(x+3)}`

`<=>sqrt{x-1}(sqrt{x-2}-sqrt{x+3})-(sqrt{x-2}-sqrt{x+3})=0`

`<=>(sqrt{x-2}-sqrt{x+3})(sqrt{x-1}-1)=0`

`+)sqrt{x-2}=sqrt{x+3}`

`<=>x-2=x+3`

`<=>0=5` vô lý

`+)sqrt{x-1}-1=0`

`<=>x-1=1`

`<=>x=2(tm)`.

Vậy `x=2`.

21 tháng 10 2018

đơn giản như đan rổ

21 tháng 10 2018

1. đk: pt luôn xác định với mọi x

\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)

Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!

2.  đk: \(x\geq 1\)

\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)

Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!