Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(\left(x^2+2x-5\right)^2=\left(x^2-x+5\right)^2.\)
<=> \(\left(x^2+2x-5\right)^2-\left(x^2-x+5\right)^2=0\)
<=> \(\left(3x-10\right)\left(2x^2+x\right)=0\)
<=> \(\left(3x-10\right)\cdot x\cdot\left(2x+1\right)=0\)
TH1: 3x-10=0 <=> x=10/3
TH2: x=0
TH3: 2x+1=0 <=> x=-1/2
2) Ta có: \(\left(x-5\right)\left(x-6\right)\left(x+2\right)\left(x+3\right)=180\)
<=> \(\left(x-5\right)\left(x+2\right)\cdot\left(x-6\right)\left(x+3\right)=180\)
<=> \(\left(x^2-3x-10\right)\left(x^2-3x-18\right)=180\)
Đặt t = \(x^2-3x-14\)
Ta được pt <=> \(\left(t-4\right)\left(t+4\right)=180\)
<=> \(t^2-16=180\)
<=> \(t^2=196\)<=> \(\orbr{\begin{cases}t=14\\t=-14\end{cases}}\)
TH1: t=14 <=> \(x^2-3x-14=14\)
<=> \(x^2-3x-28=0\)
<=> \(\orbr{\begin{cases}x=-4\\x=7\end{cases}}\)
TH2: t=-14 <=> \(x^2-3x-14=-14\)
<=> \(x\left(x-3\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
\(x^2+3\sqrt{x^2+3x}=10-3x\)
=>\(x^2+3x+3\sqrt{x^2+3x}-10=0\)
=>\(\left(\sqrt{x^2+3x}\right)^2+3\sqrt{x^2+3x}-10=0\)
=>\(\left(\sqrt{x^2+3x}+5\right)\left(\sqrt{x^2+3x}-2\right)=0\)
\(\Leftrightarrow\sqrt{x^2+3x}-2=0\)
=>\(\sqrt{x^2+3x}=2\)
=>x^2+3x=4
=>x^2+3x-4=0
=>(x+4)(x-1)=0
=>x=1 hoặc x=-4
`x^2-2x-sqrt3+1=0`
Vì `Delta=1+sqrt3-1>0`
`=>` pt có 2 nghiệm pb
ÁP dụng vi-ét:
`x_1+x_2=2,x_1.x_2=1-sqrt3`
`M=x_1^2x_2^2-2x_1.x_2-x_1-x_2`
`=(x_1.x_2)^2-2(x_1.x_2)-(x_1+x_2)`
`=(sqrt3-1)^2-2(1-sqrt3)-2`
`=4-2sqrt3-2+2sqrt3-2`
`=0`
ĐKXĐ: x+3>=0
=>x>=-3
\(x+\left(x+1\right)\sqrt{x+3}=5\)
=>\(x+\sqrt{\left(x+3\right)\left(x+1\right)^2}=5\)
=>\(x+\sqrt{\left(x+3\right)\left(x^2+2x+1\right)}=5\)
=>\(x+\sqrt{x^3+2x^2+x+3x^2+6x+3}=5\)
=>\(x+\sqrt{x^3+5x^2+7x+3}=5\)
=>\(x-1+\sqrt{x^3+5x^2+7x+3}-4=0\)
=>\(\left(x-1\right)+\dfrac{x^3+5x^2+7x+3-16}{\sqrt{x^3+5x^2+7x+3}+4}=0\)
=>\(\left(x-1\right)+\dfrac{x^3-x^2+6x^2-6x+13x-13}{\sqrt{x^3+5x^2+7x+3}+4}=0\)
=>\(\left(x-1\right)+\dfrac{\left(x-1\right)\left(x^2+6x+13\right)}{\sqrt{x^3+5x^2+7x+3}+4}=0\)
=>\(\left(x-1\right)\left(1+\dfrac{x^2+6x+13}{\sqrt{x^3+5x^2+7x+3}+4}\right)=0\)
=>x-1=0
=>x=1(nhận)
\(x^3+y^3=5+x^2y+xy^2\Rightarrow x^3+y^3-\left(x^2y+xy^2\right)=5\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=5\)
\(\Rightarrow\left(x+y\right)\left(x-y\right)^2=5\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\5>0\end{matrix}\right.\Rightarrow x+y>0\)
Lại có \(\left\{{}\begin{matrix}\left(x-y\right)^2\in N\\\left(x-y\right)^2< 5\end{matrix}\right.\) và \(\left(x-y\right)^2\) là số chính phương
\(\Rightarrow\left(x-y\right)^2=1\Rightarrow\left\{{}\begin{matrix}x+y=5\\x-y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
\(\sqrt{x}+\sqrt{x+3}=5-\sqrt{x^2+3}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)+\left(\sqrt{x+3}-2\right)+\left(\sqrt{x^2+3}-2\right)=0\)
\(\Leftrightarrow\frac{x-1}{\sqrt{x}+1}+\frac{x-1}{\sqrt{x+3}+2}+\frac{x^2-1}{\sqrt{x^2+3}+2}=0\)
\(\Leftrightarrow x-1=0\)
\(x=1\)