Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x < -5, ta có: x +5 < 0; x -2 < 0 => |x+5| = - x - 5; |x-2| = 2 - x
=> - x - 5 + 3. (2-x) = 14 + x => x = -2,6 ( ko thỏa mãn các giá trị x đang xét)
Với \(-5\le x< 2\), ta có: x + 5 \(\le\)0; x - 2 < 0 => |x+5| = x+5; |x-2| = 2-x
=> x+5 + 3.(2-x) = 14 + x=> x = -1 (thỏa mãn các giá trị x đang xét)
Với \(x\ge2\), ta có: x+ 5 > 0; x - 2 \(\ge\)0 => |x+5| = x+5; |x-2| = x-2
=> x+5 + 3.(x-2) = 14 + x => x = 5 (thỏa mãn các giá trị x đang xét)
Vậy phương trình đã cho có tập nghiệm là \(S=\left\{-1;5\right\}\)
nha.. Chúc bn hc tốt
mấy cái đoạn với hơi khó hiểu 1 chút
bạn có thể giúp giải rõ ràng hơn ko
\(\Leftrightarrow\dfrac{-7}{x^2+3x-10}+\dfrac{x+4}{x+5}+\dfrac{x+3}{x-2}+3=0\)
\(\Leftrightarrow-7+x^2+2x-8+x^2+8x+15+3x^2+9x-30=0\)
\(\Leftrightarrow5x^2+19x-30=0\)
hay \(x\in\left\{\dfrac{6}{5}\right\}\)
x-3/13+x-3/14=x-3/15+x-3/16
<=> x-3/13+x-3/14-x-3/15-x-3/16=0
<=> (x-3).(1/13+1/14-1/15-1/16)
<=> (x-3)=0 ( Vì 1/13+1/14-1/15-1/16>0)
<=> x-3=0 => x=3
Vậy x=3
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-1=14\\x^2-2x-1=-14\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-15=0\\x^2-2x+13=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-5\right)\left(x+3\right)=0\\\left(x-1\right)^2+12=0\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Bài 1 :
a) \(a\ne x\)
b) Tại a= 2 PT
\(\Leftrightarrow\left(5.2-8\right)x=2014\)
\(\Leftrightarrow2x=2014\)
\(\Leftrightarrow x=1007\)
Vậy tập nghiệm của phương trình đã cho khi a=2 là \(S=\left(1007\right)\)
Bài 2
Ta có :\(f\left(x\right)=2x^2-12x+14\)
\(=2\left(x^2-6x+9\right)-4\)
\(=2\left(x-3\right)^2-4\ge-4\)
Dấu \("="\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy GTNN của \(f\left(x\right)\)là \(-4\)khi \(x=3\)
Nhớ K cho tớ nhé
a. Ta có:
\(x^2-6x+3=0\Leftrightarrow x^2-2.x.3+3^2-6=0\)
\(\Leftrightarrow\left(x-3\right)^2-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=\sqrt{6}\\x-3=-\sqrt{6}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\)
Ta có:
\(x^2-7x+14=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{7}{2}+\dfrac{49}{4}+\dfrac{7}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}=0\)
Ta có: \(\left(x+\dfrac{7}{2}\right)^2\ge0\)
=> \(\left(x+\dfrac{7}{2}\right)^2+\dfrac{7}{4}>0\)
=> pt vô nghiệm
a) (x2+x-6)(x2+9x+14) = 300
<=> (x-2)(x+3)(x+2)(x+7) - 300 = 0
<=> [(x-2)(x+7)][(x+2)(x+3)] - 300 = 0
<=> (x2-5x-14)(x2+5x+6) - 300 = 0
Đặt x2 + 5x - 14 = a
<=> a(a+20) - 300 = 0
<=> a2 + 20a - 300 = 0
<=> a2 + 20a + 100 - 400 = 0
<=> (a+10)2 - 202 = 0
<=> (a-10)(a+30) = 0
<=> \(\left[{}\begin{matrix}a=10\\a=-30\end{matrix}\right.\)
Với a = 10, ta có:
x2 + 5x - 14 = 10
=> x2 + 5x - 24 = 0
=> (x-3)(x+8) = 0
=> \(\left[{}\begin{matrix}x=3\\x=-8\end{matrix}\right.\)
Với a = -30, ta có:
x2 + 5x - 14 = -30
=> x2 + 5x + 16 = 0 (vn)
Vậy nghiệm pt x = 3; x = -8
b) (2x-5)(3x+1) = 4x2 - 25
<=> (2x-5)(3x+1) = (2x-5)(2x+5)
<=> (2x-5)(3x+1-2x-5) = 0
<=> (2x-5)(x-4) = 0
<=> \(\left[{}\begin{matrix}2x-5=0\\x-4=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=4\end{matrix}\right.\)
Vậy...
/x-1/ +/x+2/ +/x-3/ =14
\(\Leftrightarrow\)/x-1/ + /x-3/ +/x+2/ =14
\(\Leftrightarrow\)/x-1/ +/3-x/ +/x+2/ =14
\(\Leftrightarrow\)/x-1+3-x/ +/x+2/ =14
\(\Leftrightarrow\)2 +/x+2/ =14
\(\Leftrightarrow\)/x+2/ -12 =0
\(\Rightarrow\)\(\orbr{\begin{cases}x+2=12\\x+2=-12\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=10\\x=-14\end{cases}}\)
Vậy S ={ 10 ;-14 }