K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

PT \(\Leftrightarrow2x^2+\sqrt{2-x}=2x^2.\sqrt{2-x}\)

Đặt \(2x^2=a;\sqrt{2-x}=b\left(a,b\ge0\right)\)

Phương trình trở thành: \(a+b=ab\Leftrightarrow a-ab+b=0\)

Tới đây bí :v

19 tháng 9 2018

7(x - 3) - x(3 - x)

= (x - 3)(7 + x)

chỉ bt có v mà k bt có đúng k 

19 tháng 9 2018

1 ) 7 ( x - 3 ) - x ( 3 - x ) 

= 7 ( x - 3 ) + x ( x - 3 )

= ( x - 3 ) ( 7 + x )

2 ) 4x2 - 6x + 3 - 2x

= 4x2 - 2x - 6x + 3

= 2x ( 2x - 1 ) - 3 ( 2x - 1 )

= ( 2x - 1 ) ( 2x - 3 )

3 ) ( 4 - x ) - 4x + x2

= ( 4 - x ) - x ( 4 - x )

= ( 4 - x ) (  1 - x )

4 ) x2 - 2xy + y2

= ( x - y )2

a, \(\sqrt{x^2+2x-5}\)\(\sqrt{2x-1}\)( x \(\ge\frac{1}{2}\))

\(\Leftrightarrow x^2+2x-5=2x-1\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)

#mã mã#

b, \(\sqrt{x\left(x^3-3x+1\right)}\)\(=\sqrt{x\left(x^3-x\right)}\)\(\left(x\ge1\right)\)

\(\Leftrightarrow x\left(x^3-3x+1\right)\)\(x\left(x^3-1\right)\)

\(\Leftrightarrow\)x( x3 - 3x + 1 ) - x ( x3 - 1 ) = 0

\(\Leftrightarrow\)x ( x3 - 3x + 1 - x3 + 1 ) = 0

\(\Leftrightarrow\)x( 2-3x ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-3x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{2}{3}\left(ktm\right)\end{cases}}\)

vậy pt vô nghiệm

#mã mã#

a) (12x-5)(4x-1)+(3x-7)(1-16x)

= (48x^2 - 12x - 20x + 5) + (3x - 48x^2 - 7 + 112x)

= 48x^2 - 12x - 20x + 5 +3x - 48x^2 -7 + 112x

= 83x-2

những phần sau bạn cứ làm tương tự theo cách nhân đa thức với đa thức và phá ngiawcj là ra nha :0))

8 tháng 7 2016

sao ko làm hết ra

14 tháng 1 2020

Em kiểm tra lại đề giúp cô nhé!

14 tháng 7 2018

b) Ta có pt \(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)

<=>  \(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\Leftrightarrow\left|3-\sqrt{x-1}\right|+\left|\sqrt{x-1}-2\right|=1\)

Mà \(\left|3-\sqrt{x-1}\right|+\left|\sqrt{x-1}-2\right|\ge\left|3-\sqrt{x-1}+\sqrt{x-1}-2\right|=1\)

...

14 tháng 7 2018

a) Đặt \(\sqrt{x^2-4x-5}=a\left(a\ge0\right)\)

Ta có pt \(\Leftrightarrow2a^2-3a-2=0\Leftrightarrow\left(a-2\right)\left(2a+1\right)=0\)

...

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

a)

ĐKĐB: \(\left\{\begin{matrix} 2x-1\geq 0\\ x^2+2x-5\geq 0\end{matrix}\right.\)

PT \(\Leftrightarrow 2x-1=x^2+2x-5\) (bình phương 2 vế)

\(\Leftrightarrow x^2-4=0\Leftrightarrow (x-2)(x+2)=0\Rightarrow \left[\begin{matrix} x=2\\ x=-2\end{matrix}\right.\)

Thử lại vào ĐKĐB suy ra $x=2$ là nghiệm duy nhất.

b)

ĐKĐB: \( \left\{\begin{matrix} x(x^3-3x+1)\geq 0\\ x(x^3-x)\geq 0\end{matrix}\right.\)

PT \(\Leftrightarrow x(x^3-3x+1)=x(x^3-x)\) (bình phương)

\(\Leftrightarrow x(x^3-3x+1-x^3+x)=0\)

\(\Leftrightarrow x(1-2x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=\frac{1}{2}\end{matrix}\right.\)

Thử lại vào ĐKĐB thấy $x=0$ là nghiệm duy nhất

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

e)

ĐKXĐ: \(x\geq \frac{5}{3}\)

PT \(\Rightarrow (\sqrt{x+2}-\sqrt{2x-3})^2=3x-5\) (bình phương 2 vế)

\(\Leftrightarrow 3x-1-2\sqrt{(x+2)(2x-3)}=3x-5\)

\(\Leftrightarrow 2=\sqrt{(x+2)(2x-3)}\)

\(\Leftrightarrow 4=(x+2)(2x-3)\)

\(\Leftrightarrow 2x^2+x-10=0\)

\(\Leftrightarrow (x-2)(2x+5)=0\Rightarrow \left[\begin{matrix} x=2\\ x=\frac{-5}{2}\end{matrix}\right.\)

Kết hợp với ĐKXĐ suy ra $x=2$

f) Bạn xem lại đề.