Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt< =>\left(x-y\right)^2+xy=\left(x-y\right)\left(xy+2\right)+9\)
\(< =>\left(y-x\right)\left(xy+2+y-x\right)+xy+2+y-x-\left(y-x\right)=11\)
\(< =>\left(y-x+1\right)\left(xy+2+y-x\right)-\left(y-x+1\right)=10\)
\(< =>\left(x-y+1\right)\left(x-y-1-xy\right)=10\)
đến đây giải hơi bị khổ =))
Giải pt nghiệm nguyên
a)3x^2 + 4y^2=6x+13
b)5x^2 + 2xy +y^2 -4x-40=0
c)x^2+y^2=x+y+8
d)x^2-y^2-4x-4y=92
\(PT\Leftrightarrow y\left(x^2-2x-1\right)=x^2+2x-1\).
Từ đó \(x^2-2x-1\vdots x^2+2x-1\)
\(\Leftrightarrow4x⋮x^2+2x-1\) (1)
\(\Rightarrow4\left(x^2+2x-1\right)-4x^2⋮x^2+2x-1\)
\(\Leftrightarrow8x-4⋮x^2+2x-1\) (2)
Từ (1), (2) suy ra \(8⋮x^2+2x-1\).
Đến đây bạn xét TH.
ĐKXĐ: \(xy\ne0\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{6xy}=\dfrac{1}{6}\)
\(\Rightarrow6x+6y+1=xy\)
\(\Leftrightarrow xy-6x-6y+36=37\)
\(\Leftrightarrow x\left(y-6\right)-6\left(y-6\right)=37\)
\(\Leftrightarrow\left(x-6\right)\left(y-6\right)=37\)
\(\Rightarrow\left(x-6;y-6\right)=\left(-37;-1\right);\left(-1;-37\right);\left(1;37\right);\left(37;1\right)\)
\(\Rightarrow\left(x;y\right)=\left(-31;5\right);\left(5;-31\right);\left(7;43\right);\left(43;7\right)\)
Lời giải:
$x(x^2+x+1)=4y(y+1)$
$\Leftrightarrow x(x^2+x+1)+1=4y(y+1)+1$
$\Leftrightarrow (x^2+1)(x+1)=(2y+1)^2$
Vì $(x^2+1)-(x+1)=x^2-x=x(x-1)\vdots 2$ nên $x^2+1, x+1$ cùng tính chẵn lẻ. Mà tích của chúng là $(2y+1)^2$ lẻ nên $x^2+1, x+1$ cùng lẻ.
Gọi $d=ƯCLN(x^2+1, x+1)$
$\Rightarrow x^2+1\vdots d; x+1\vdots d$
$\Rightarrow x(x+1)-(x^2+1)\vdots d$
$\Rightarrow x-1\vdots d$
$\Rightarrow (x+1)-(x-1)\vdots d\Rightarrow 2\vdots d$
$\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $x^2+1\vdots 2$ (loại do $x^2+1$ lẻ)
$\Rightarrow d=1$
Vậy $(x^2+1, x+1)=1$. Mà tích của chúng là scp nên bản thân mỗi số $x^2+1, x+1$ là scp.
Đặt $x^2+1=a^2, x+1=b^2$ với $a,b\in\mathbb{N}$
$\Rightarrow (b^2-1)^2+1=a^2$
$\Rightarrow 1=(a^2-b^2+1)(a^2+b^2-1)$
$\Rightarrow a^2-b^2+1=1=a^2+b^2-1=1$
$\Rightarrow a=b=1$
$\Rightarrow x=0\Rightarrow y=0$ hoặc $y=-1$