Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x(x^2+x+1)=4y(y+1)$
$\Leftrightarrow x(x^2+x+1)+1=4y(y+1)+1$
$\Leftrightarrow (x^2+1)(x+1)=(2y+1)^2$
Vì $(x^2+1)-(x+1)=x^2-x=x(x-1)\vdots 2$ nên $x^2+1, x+1$ cùng tính chẵn lẻ. Mà tích của chúng là $(2y+1)^2$ lẻ nên $x^2+1, x+1$ cùng lẻ.
Gọi $d=ƯCLN(x^2+1, x+1)$
$\Rightarrow x^2+1\vdots d; x+1\vdots d$
$\Rightarrow x(x+1)-(x^2+1)\vdots d$
$\Rightarrow x-1\vdots d$
$\Rightarrow (x+1)-(x-1)\vdots d\Rightarrow 2\vdots d$
$\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $x^2+1\vdots 2$ (loại do $x^2+1$ lẻ)
$\Rightarrow d=1$
Vậy $(x^2+1, x+1)=1$. Mà tích của chúng là scp nên bản thân mỗi số $x^2+1, x+1$ là scp.
Đặt $x^2+1=a^2, x+1=b^2$ với $a,b\in\mathbb{N}$
$\Rightarrow (b^2-1)^2+1=a^2$
$\Rightarrow 1=(a^2-b^2+1)(a^2+b^2-1)$
$\Rightarrow a^2-b^2+1=1=a^2+b^2-1=1$
$\Rightarrow a=b=1$
$\Rightarrow x=0\Rightarrow y=0$ hoặc $y=-1$
b1 \(\frac{x+a}{x+1}+\frac{x-2}{x}=2\)
ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
\(\Leftrightarrow x\left(x+a\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow x^2+ax+x^2-x-2=2x^2+2x\)
\(\Leftrightarrow ax-3x=2\)
\(\Leftrightarrow\left(a-3\right)x=2\)
để pt vô nghiệm thì a-3=0 <=>a=3 thì pt vô nghiệm
2,\(4x-k+4=kx+k\)
\(\Leftrightarrow4x-kx=2k-4\)
\(\Leftrightarrow\left(4-k\right)x=2k-4\)
để pt có nghiệm duy nhất thì 4-k khác 0 <=> k khác 4 thì pt có nghiệm duy nhất là\(\frac{2k-4}{4-k}\)
pt vô nghiệm thì 4-k=0 <=.>k=4
Giải pt nghiệm nguyên
a)3x^2 + 4y^2=6x+13
b)5x^2 + 2xy +y^2 -4x-40=0
c)x^2+y^2=x+y+8
d)x^2-y^2-4x-4y=92
\(\Rightarrow x^2+2x+1-y^2-4y-4-7=0\\ \Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=16\\\left(y+2\right)^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+1=4\\y+2=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=-4\\y+2=-3\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Bạn làm như thế này là sai rồi nhé bạn dùng HDT số 3 rồi xét các ước của pt=> nghiệm nha
\(pt< =>\left(x-y\right)^2+xy=\left(x-y\right)\left(xy+2\right)+9\)
\(< =>\left(y-x\right)\left(xy+2+y-x\right)+xy+2+y-x-\left(y-x\right)=11\)
\(< =>\left(y-x+1\right)\left(xy+2+y-x\right)-\left(y-x+1\right)=10\)
\(< =>\left(x-y+1\right)\left(x-y-1-xy\right)=10\)
đến đây giải hơi bị khổ =))