Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^4-7x^2+6\)
\(=x^4-x^2-6x^2+6\)
\(=x^2\left(x^2-1\right)-6\left(x^2-1\right)\)
\(=\left(x^2-6\right)\left(x^2-1\right)\)
\(=\left(x+\sqrt{6}\right)\left(x-\sqrt{6}\right)\left(x+1\right)\left(x-1\right)\)
\(b,x^4+2x^2-3=x^4+3x^2-x^2-3\)
\(=x^2\left(x^2+3\right)-\left(x^2+3\right)\)
\(=\left(x^2-1\right)\left(x^2+3\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(x^2+3\right)\)
b.\(x^3-16x^2+64x=0\)
=>\(x^3-8x^2-8x^2+64x=0\)
=>\(x^2\left(x-8\right)-8x\left(x-8\right)=0\)
=>\(x\left(x-8\right)\left(x-8\right)=0\)
=>\(x=0\) và \(x-8=0\)
=>x=0 và x= 8
Vậy S={0; 8}
\(|6x-1|=2x+5\)
-Nếu 6x - 1 \(\ge0\Leftrightarrow x\ge\dfrac{1}{6}\)
\(|6x-1|=2x+5\)
\(\Leftrightarrow6x-1=2x+5\)
\(\Leftrightarrow6x-2x=5+1\)
\(\Leftrightarrow4x=6\)
\(\Leftrightarrow x=\dfrac{3}{2}\) (Loại)
-Nếu 6x-1 < 0 \(\Leftrightarrow x< \dfrac{1}{6}\)
\(|6x-1|=2x+5\)
\(\Leftrightarrow-6x+1=2x+5\)
\(\Leftrightarrow-6x-2x=5-1\)
\(\Leftrightarrow-8x=4\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)(Nhận)
Vậy S={\(-\dfrac{1}{2}\)}
a. \(3x^2+2-1=0\)
\(\text{⇔}3x^2+1=0\)
\(\text{⇔}3x^2=-1\)
\(\text{⇔}x^2=\frac{-1}{3}\) (Vô lí)
Vậy phương trình trên vô nghiệm.
b. \(x^2-3x+2=0\)
\(\text{⇔}x^2-x-2x+2=0\)
\(\text{⇔}x\left(x-1\right)-2\left(x-1\right)=0\)
\(\text{⇔}\left(x-1\right)\left(x-2\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{1;2\right\}\).
c. \(x^2-4x+3=0\)
\(\text{⇔}x^2-x-3x+3=0\)
\(\text{⇔}x\left(x-1\right)-3\left(x-1\right)=0\)
\(\text{⇔}\left(x-1\right)\left(x-3\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{1;3\right\}\).
d. \(x^2+6x-16=0\)
\(\text{⇔}x^2-2x+8x-16=0\)
\(\text{⇔}x\left(x-2\right)+8\left(x-2\right)=0\)
\(\text{⇔}\left(x-2\right)\left(x+8\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{2;-8\right\}\).
Chúc bạn học tốt@@
a)
\(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2-x+3x-1=0\)
\(\Leftrightarrow x\left(3x-1\right)+\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\)
b)
\(x^2-5x+6=0\)
\(\Leftrightarrow x^2-3x-2x+6=0\)
\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
a, \(3x^2+2x-1=0\)
\(\Rightarrow3x^2-x+3x-1=0\)
\(\Rightarrow\left(3x^2-x\right)+\left(3x-1\right)=0\)
\(\Rightarrow x.\left(3x-1\right)+\left(3x-1\right)=0\)
\(\Rightarrow\left(3x-1\right).\left(x+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x=1\\x=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\)
Vậy......
b, \(x^2-5x+6=0\)
\(\Rightarrow x^2-3x-2x+6=0\)
\(\Rightarrow\left(x^2-3x\right)-\left(2x-6\right)=0\)
\(\Rightarrow x.\left(x-3\right)-2.\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right).\left(x-2\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Vậy......
Chúc bạn học tốt!!!
a. \(x^2-x-6=0\)
\(\Leftrightarrow\left(x^2+2x\right)-\left(3x+6\right)=0\)
\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
b. \(x^2+8x-20=0\)
\(\Leftrightarrow\left(x^2-2x\right)+\left(10x-20\right)=0\)
\(\Leftrightarrow x\left(x-2\right)+10\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)
c. \(x^4+4x^2-5=0\)
\(\Leftrightarrow\left(x^4+4x^2+4\right)-9=0\)
\(\Leftrightarrow\left(x^2+2\right)^2-3^2=0\)
\(\Leftrightarrow\left(x^2+2+3\right)\left(x^2+2-3\right)=0\)
\(\Leftrightarrow\left(x^2+5\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-5\left(vo.nghiem\right)\\x=1\\x=-1\end{matrix}\right.\)
d. \(x^3-19x-30=0\)
\(\Leftrightarrow\left(x^3-5x^2\right)+\left(5x^2-25x\right)+\left(6x-30\right)=0\)
\(\Leftrightarrow x^2\left(x-5\right)+5x\left(x-5\right)+6\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\left(x^2+2x\right)+\left(3x+6\right)\right]=0\)
\(\Leftrightarrow\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\\x=-3\end{matrix}\right.\)
Ta có : \(6x^4-35x^3+62x^2-35x+6=0\)
=> \(6x^4-3x^3-32x^3+16x^2+46x^2-23x-12x+6=0\)
=> \(3x^3\left(2x-1\right)-16x^2\left(2x-1\right)+23x\left(2x-1\right)-6\left(2x-1\right)=0\)
=> \(\left(3x^3-16x^2+23x-6\right)\left(2x-1\right)=0\)
=> \(\left(3x^3-x^2-15x^2+5x+18x-6\right)\left(2x-1\right)=0\)
=> \(\left(x^2\left(3x-1\right)-5x\left(3x-1\right)+6\left(3x-1\right)\right)\left(2x-1\right)=0\)
=> \(\left(x^2-5x+6\right)\left(3x-1\right)\left(2x-1\right)=0\)
=> \(\left(x^2-2x-3x+6\right)\left(3x-1\right)\left(2x-1\right)=0\)
=> \(\left(x\left(x-2\right)-3\left(x-2\right)\right)\left(3x-1\right)\left(2x-1\right)=0\)
=> \(\left(x-3\right)\left(x-2\right)\left(3x-1\right)\left(2x-1\right)=0\)
=> \(\left[{}\begin{matrix}x-3=0\\x-2=0\\3x-1=0\\2x-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3\\x=2\\x=\frac{1}{3}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{2,3,\frac{1}{2},\frac{1}{3}\right\}\)
Nhận thấy \(x=0\) ko là nghiệm, chia 2 vế của pt cho \(x^2\)
\(6x^2+\frac{6}{x^2}-35x-\frac{35}{x}+62=0\)
\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)-35\left(x+\frac{1}{x}\right)+62=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(6\left(t^2-2\right)-35t+62=0\)
\(\Leftrightarrow6t^2-35t+50=0\Rightarrow\left[{}\begin{matrix}t=\frac{5}{2}\\t=\frac{10}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=\frac{5}{2}\\x+\frac{1}{x}=\frac{10}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-5x+2=0\\3x^2-10x+3=0\end{matrix}\right.\)