Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài \(ĐK\left(x\ge-\frac{3}{2}\right)\)
\(=>\left(x-3\right)^2+\left(\sqrt{2x+3}-3\right)^2=0\)
mà \(\left(x-3\right)^2+\left(\sqrt{2x+3}-3\right)^2\ge0\)
dấu = xảy ra khi x=3 (chọn )
zậy...
:V cách khác
Ta có:
\(x^2-4x+21=6\sqrt{2x+3}\left(x\ge-\frac{3}{2}\right)\)
\(\Leftrightarrow x^2-4x+21-18=6\left(\sqrt{2x+3}-3\right)\)
\(\Leftrightarrow x^2-4x+3=6\cdot\frac{2x-6}{\sqrt{2x+3}+3}\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)-\frac{12\left(x-3\right)}{\sqrt{2x+3}+3}=0\)
\(\Leftrightarrow\left(x-3\right)\left[x-1-\frac{12}{\sqrt{2x+3}+3}\right]=0\)
:V
Câu 1:
\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}=2\left(x+1\right)\)
- Với \(x< -1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) pt vô nghiệm
- Nhận thấy \(x=-1\) là 1 nghiệm
- Nếu \(x>-1\) kết hợp ĐKXĐ các căn thức ta được \(x\ge1\), pt tương đương:
\(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2x+6+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4x+4\)
\(\Leftrightarrow2\sqrt{2x^2+4x-6}=x-1\)
\(\Leftrightarrow4\left(2x^2+4x-6\right)=\left(x-1\right)^2\)
\(\Leftrightarrow7x^2+18x-25=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{25}{7}< 0\left(l\right)\end{matrix}\right.\)
Vậy pt có nghiệm \(x=\pm1\)
Câu 2:
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=2\)
- Nếu \(\sqrt{x-1}-1\ge0\Leftrightarrow x\ge2\) pt trở thành:
\(\sqrt{x-1}+1-\sqrt{x-1}+1=2\Leftrightarrow2=2\) (luôn đúng)
- Nếu \(1\le x< 2\) pt trở thành:
\(\sqrt{x-1}+1-1+\sqrt{x-1}=2\Leftrightarrow x=2\left(l\right)\)
Vậy nghiệm của pt là \(x\ge2\)
Câu 3:
Bình phương 2 vế ta được:
\(2x^2+2x+5+2\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2x^2+2x+9\)
\(\Leftrightarrow\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2\)
\(\Leftrightarrow\left(x^2+x+4\right)\left(x^2+x+1\right)=4\)
Đặt \(x^2+x+1=a>0\) pt trở thành:
\(a\left(a+3\right)=4\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Câu 5:
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
Mà \(VT=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1\)
\(\Rightarrow VT\ge VP\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\sqrt{x-1}-2\ge0\\\sqrt{x-1}-3\le0\end{matrix}\right.\) \(\Rightarrow5\le x\le10\)
Vậy nghiệm của pt là \(5\le x\le10\)
\(2x+3=2\sqrt{x+1}+\sqrt{2x+1}\left(đk:x\ge-\frac{1}{2}\right)\) (*)
Đặt \(2\sqrt{x+1}=a\left(a\ge0\right)\) , \(\sqrt{2x+1}=b\left(b\ge0\right)\)
Có \(a^2-b^2=4\left(x+1\right)-2x-1=4x+4-2x-1=2x+3\)
Có \(2x+3=a+b\)
=> \(a^2-b^2=a+b\)( do \(a^2-b^2=2x+3\))
<=> \(\left(a+b\right)\left(a-b\right)-\left(a+b\right)=0\)
<=> \(\left(a+b\right)\left(a-b-1\right)=0\)
=> \(\left[{}\begin{matrix}a=-b\\a=b+1\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}2\sqrt{x+1}=-\sqrt{2x+1}\\2\sqrt{x+1}=\sqrt{2x+1}+1\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}4\left(x+1\right)=2x+1\\4\left(x+1\right)=2x+1+2\sqrt{2x+1}+1\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}4x+4-2x-1=0\\4x+4-2x-1-1=2\sqrt{2x+1}\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}2x+3=0\\2x+2=2\sqrt{2x+1}\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=-\frac{3}{2}\left(ktm\right)\\x+1=\sqrt{2x+1}\end{matrix}\right.\)
=> \(x+1=\sqrt{2x+1}\)
<=> x2+2x+1=2x+1
<=> x2=0
<=>x=0(t/m pt (*))
Vậy pt (*) có tập nghiệm \(S=\left\{0\right\}\)
b, \(2+\sqrt{3-8x}=6x+\sqrt{4x-1}\) (*) (đk: \(\frac{1}{4}\le x\le\frac{3}{8}\))
<=>\(2-6x=\sqrt{4x-1}-\sqrt{3-8x}\)
Đặt \(\sqrt{3-8x}=a\left(a\ge0\right)\) , \(\sqrt{4x-1}=b\left(b\ge0\right)\)
Có \(\left\{{}\begin{matrix}a^2-b^2=3-8x-4x+1\\2-6x=b-a\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=4-12x\\2-6x=b-a\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=2\left(2-6x\right)\\2-6x=b-a\end{matrix}\right.\)
=> \(\left(a+b\right)\left(a-b\right)=2\left(b-a\right)\)
<=> \(\left(a+b\right)\left(a-b\right)-2\left(b-a\right)=0\)
<=> \(\left(a-b\right)\left(a+b+2\right)=0\)
=> a-b=0(do a+b+2 >0 với \(a;b\ge0\))
<=> a=b <=> \(\sqrt{3-8x}=\sqrt{4x-1}\)<=> \(3-8x=4x-1\)
<=> \(3+1=4x+8x\)<=> \(4=12x\)
<=> \(x=\frac{1}{3}\)
Vậy pt (*) có tập nghiệm \(S=\left\{\frac{1}{3}\right\}\)
Bài 1:
a) ĐKXĐ: \(x\geq \frac{-3}{2}\)
PT \(\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\)
\(\Leftrightarrow x^2+2x+1+(2x+3)-2\sqrt{2x+3}+1=0\)
\(\Leftrightarrow (x+1)^2+(\sqrt{2x+3}-1)^2=0\)
Vì $(x+1)^2\geq 0; (\sqrt{2x+3}-1)^2\geq 0$ với mọi $x\geq \frac{-3}{2}$ nên để tổng của chúng bằng $0$ thì $(x+1)^2=(\sqrt{2x+3}-1)^2=0$
$\Leftrightarrow x=-1$
Vậy $x=-1$
b) ĐKXĐ: \(x^2-4x-8\geq 0\)
PT \(\Leftrightarrow 2(x^2-4x-8)-3\sqrt{x^2-4x-8}=2\)
Đặt \(\sqrt{x^2-4x-8}=a(a\geq 0)\) thì PT trở thành:
\(2a^2-3a=2\)
\(\Leftrightarrow 2a^2-3a-2=0\Leftrightarrow (a-2)(2a+1)=0\)
\(\Rightarrow a=2\) (do $a\geq 0$)
\(\Leftrightarrow x^2-4x-8=4\)
\(\Leftrightarrow x^2-4x-12=0\Leftrightarrow \left[\begin{matrix} x=6\\ x=-2\end{matrix}\right.\) (đều thỏa mãn)
Bài 2:
\(199-2x-x^2=200-(x^2+2x+1)=200-(x+1)^2\leq 200, \forall x\in\mathbb{Z}\)
\(\Rightarrow 4y^2=2+\sqrt{199-2x-x^2}\leq 2+\sqrt{200}\)
\(\Leftrightarrow y^2\leq \frac{2+\sqrt{200}}{4}< 9\)
\(\Rightarrow -3< y< 3\). Mà $y$ nguyên nên $y\in\left\{-2;-1;0;1;2\right\}$
Thay từng giá trị của $y$ vào PT ban đầu ta tìm được các cặp $(x,y)$ sau:
$(x,y)=(1,\pm 2); (-3,\pm 2); (13,\pm 1); (-15,\pm 1)$