Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{6-5x}=a\ge0\)
\(\Leftrightarrow x=\frac{6-a^2}{5}\) thì ta có
\(\Rightarrow2\sqrt[3]{\frac{8-3a^2}{5}}+3a-8=0\)
\(\Leftrightarrow2\sqrt[3]{\frac{8-3a^2}{5}}=-3a+8=0\)
\(\Leftrightarrow45a^3-368a^2+960a-832=0\)
\(\Leftrightarrow\left(a-4\right)\left(45a^2-188a+208\right)=0\)
\(\Leftrightarrow a=4\)
\(\Rightarrow\sqrt{6-5x}=4\)
\(\Leftrightarrow x=-2\)
ĐK: \(x\le\frac{6}{5}\)
Đặt \(\sqrt[3]{3x-2}=a;\sqrt{6-5x}=b\left(b\ge0\right)\)
Khi đó ta có \(5a^3+3b^2=8\)
Theo đề bài thì \(2a+3b-8=0\Rightarrow b=\frac{8-2a}{3}\)
Ta có \(5a^3+3\left(\frac{8-2a}{3}\right)^2=8\Rightarrow15a^3+\left(8-2a\right)^2=24\)
\(\Rightarrow15a^3+4a^2-32a+40=0\Rightarrow\left(a+2\right)\left(15a^2-26a+20\right)=0\)
\(\Rightarrow a=-2\Rightarrow\sqrt[3]{3x-2}=-2\Rightarrow3x-2=-8\Rightarrow x=-2\left(tm\right)\)
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
<=>2(2x-1)-3\(\sqrt{5x-6}=-\left(3\sqrt{5x-6}-4x+2\right)\)( biến đổi VT)
=>\(-\left(3\sqrt{5x-6}-4x+2\right)=\sqrt{3x-8}\)
=>\(-3\sqrt{5x-6}+4x-2=\sqrt{3x-8}\)
<=>\(-3\sqrt{5x-6}-\sqrt{3x-8}+4x-2=0\)
<=>x=2
Lời giải có tại đây:
https://hoc24.vn/cau-hoi/1-23sqrt3x-23sqrt6-5x-802-sqrt3x1-sqrt6-x3x2-14x-803-sqrtx21253xsqrtx25.1468578539979
\(2\sqrt[3]{3x-2}+3\sqrt{6-5x}-8=0\)
\(\Leftrightarrow\left(2\sqrt[3]{3x-2}+4\right)+\left(3\sqrt{6-5x}-12\right)=0\)
\(\Leftrightarrow2\dfrac{3x-2+8}{\sqrt[3]{\left(3x-2\right)^2}-\sqrt[3]{2\left(3x-2\right)}+\sqrt[3]{4}}+3\dfrac{6-5x-16}{\sqrt{6-5x}+4}=0\)
\(\Leftrightarrow\dfrac{6\left(x+2\right)}{\sqrt[3]{\left(3x-2\right)^2}-\sqrt[3]{2\left(3x-2\right)}+\sqrt[3]{4}}+\dfrac{-15\left(x+2\right)}{\sqrt{6-5x}+4}=0\)
\(\Leftrightarrow\left(x+2\right)\left(\dfrac{6}{\sqrt[3]{\left(3x-2\right)^2}-\sqrt[3]{2\left(3x-2\right)}+\sqrt[3]{4}}+\dfrac{-15}{\sqrt{6-5x}+4}\right)=0\)
\(\Rightarrow x+2=0\Rightarrow x=-2\)
Câu a:
ĐKXĐ:...........
\(\sqrt{x^2-x+9}=2x+1\)
\(\Rightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-x+9=(2x+1)^2=4x^2+4x+1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+5x-8=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x(x-1)+8(x-1)=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (x-1)(3x+8)=0\end{matrix}\right.\Rightarrow x=1\)
Vậy.....
Câu b:
ĐKXĐ:.........
Ta có: \(\sqrt{5x+7}-\sqrt{x+3}=\sqrt{3x+1}\)
\(\Rightarrow (\sqrt{5x+7}-\sqrt{x+3})^2=3x+1\)
\(\Leftrightarrow 5x+7+x+3-2\sqrt{(5x+7)(x+3)}=3x+1\)
\(\Leftrightarrow 3(x+3)=2\sqrt{(5x+7)(x+3)}\)
\(\Leftrightarrow \sqrt{x+3}(3\sqrt{x+3}-2\sqrt{5x+7})=0\)
Vì \(x\geq -\frac{7}{5}\Rightarrow \sqrt{x+3}>0\). Do đó:
\(3\sqrt{x+3}-2\sqrt{5x+7}=0\)
\(\Rightarrow 9(x+3)=4(5x+7)\)
\(\Rightarrow 11x=-1\Rightarrow x=\frac{-1}{11}\) (thỏa mãn)
Vậy..........