Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta đưa về bài toán tìm nghiệm nguyên dương.
TH1: x,y∈Z+x,y∈Z+
PT tương đương: (x−y)(4xy−2)=(xy)3−1≥0⇒x≥y(x−y)(4xy−2)=(xy)3−1≥0⇒x≥y
Nếu x=yx=y thì hiển nhiên có xy=1⇒x=y=1xy=1⇒x=y=1.
Xét x>yx>y có 4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy(1)(1)
Vì 2(x−y)−1≠02(x−y)−1≠0 nên suy ra để có (1)(1) thì 2(x−y)−1≥xy⇔(y−2)(x+2)≤−5<02(x−y)−1≥xy⇔(y−2)(x+2)≤−5<0
⇒y−2<0→y=1⇒y−2<0→y=1. Thay vào PT ban đầu thu được x=y=1x=y=1 (loại vì đang xét x>yx>y)
TH2: x,yx,y đều âm. Ta thay x=−a,y=−bx=−a,y=−b với a,ba,b nguyên dương.
Phương trình trở thành 2a(2b2+1)−2b(2a2+1)+1=(ab)32a(2b2+1)−2b(2a2+1)+1=(ab)3
Đây là dạng PT tương tự TH1, ta cũng thu được a=b=1a=b=1, tức là x=y=−1x=y=−1
TH3: x>0,y<0x>0,y<0. Đặt x=a,y=−bx=a,y=−b (a,ba,b nguyên dương)
PT tương đương: 2b(2a2+1)+2a(2b2+1)−1=(ab)32b(2a2+1)+2a(2b2+1)−1=(ab)3
⇒2(a+b)−1⋮ab⇒2(a+b)−1⋮ab. Vì 2(a+b)−1≠02(a+b)−1≠0 nên 2(a+b)−1≥ab⇒(a−2)(b−2)≤32(a+b)−1≥ab⇒(a−2)(b−2)≤3
Với a,b≥1a,b≥1 dễ dàng suy ra không có bộ nghiệm nào thỏa mãn
TH4: x<0,y>0x<0,y>0. Đặt x=−a,y=bx=−a,y=b (a,ba,b nguyên dương)
PT tương đương 2a(2b2+1)+2b(2a2+1)+1+(ab)3=02a(2b2+1)+2b(2a2+1)+1+(ab)3=0 (vô lý)
Vậy (x,y)=(1;1)(x,y)=(1;1) hoặc (x,y)=(−1;−1)
Lời giải:
Ta đưa về bài toán tìm nghiệm nguyên dương.
TH1: x,y∈Z+
PT tương đương: (x−y)(4xy−2)=(xy)3−1≥0⇒x≥y
Nếu x=y thì hiển nhiên có xy=1⇒x=y=1.
Xét x>y có 4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy(1)
Vì 2(x−y)−1≠0 nên suy ra để có (1) thì 2(x−y)−1≥xy⇔(y−2)(x+2)≤−5<0
⇒y−2<0→y=1. Thay vào PT ban đầu thu được x=y=1 (loại vì đang xét x>y)
TH2: x,y đều âm. Ta thay x=−a,y=−b với a,b nguyên dương.
Phương trình trở thành 2a(2b2+1)−2b(2a2+1)+1=(ab)3
Đây là dạng PT tương tự TH1, ta cũng thu được a=b=1, tức là x=y=−1
TH3: x>0,y<0. Đặt x=a,y=−b (a,b nguyên dương)
PT tương đương: 2b(2a2+1)+2a(2b2+1)−1=(ab)3
⇒2(a+b)−1⋮ab. Vì 2(a+b)−1≠0 nên 2(a+b)−1≥ab⇒(a−2)(b−2)≤3
Với a,b≥1 dễ dàng suy ra không có bộ nghiệm nào thỏa mãn
TH4: x<0,y>0. Đặt x=−a,y=b (a,b nguyên dương)
PT tương đương 2a(2b2+1)+2b(2a2+1)+1+(ab)3=0 (vô lý)
Vậy (x,y)=(1;1) hoặc (x,y)=(−1;−1)
\(\dfrac{y}{2\left(y-3\right)}=\dfrac{2y}{\left(y+1\right)\left(y-3\right)}-\dfrac{y}{2y+2}\)
\(DKXD:y\ne-1;y\ne3\)
<=>\(\dfrac{y\left(y+1\right)}{2\left(y-3\right)\left(y+1\right)}=\dfrac{4y}{2\left(y-3\right)\left(y+1\right)}-\dfrac{y\left(y-3\right)}{2\left(y+1\right)\left(y-3\right)}\)
=>y2+y=4y-y2+3y
<=>2y2-6y=0
<=>2y(y-3)=0
\(\left[{}\begin{matrix}y=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=0\left(TM\right)\\y=3\left(KTM\right)\end{matrix}\right.\)
vay..........
\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)
\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Ta có : \(x^3-y^3-2y^2-3y-1=0\)
\(\Leftrightarrow x^3-\left(y^3+2y^2+3y+1\right)=0\)
\(\Leftrightarrow x^3=y^3+2y^2+3y+1\)
Lại có :
\(y^3+2y^2+3y+1=\left(y^3-3y^2+3y-1\right)+5y^2+2=\left(y-1\right)^3+5y^2+2\)
Do \(5y^2\ge0\forall y\Rightarrow\left(y-1\right)^3+5y^2+2\ge\left(y-1\right)^3+2>\left(y-1\right)^3\left(1\right)\)\(y^3+2y^2+3y+1=\left(y^3+3y^2+3y+1\right)-y^2=\left(y+1\right)^3-y^2\)
Do \(y^2\ge0\forall y\Rightarrow\left(y+1\right)^3-y^2\le\left(y+1\right)^3\forall y\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\left(y-1\right)^3< x^3\le\left(y+1\right)^3\)
\(\Rightarrow\left[{}\begin{matrix}x^3=\left(y+1\right)^3\left(3\right)\\x^3=y^3\left(4\right)\end{matrix}\right.\)
Từ ( 3 )
\(\Rightarrow x^3=y^3+3y^2+3y+1\)
\(\Rightarrow y^3+2y^2+3y+1=y^3+3y^2+3y+1\)
\(\Rightarrow y^2=0\)
\(\Rightarrow y=0\)
\(\Rightarrow\left(y+1\right)^3=1\)
\(\Rightarrow x^3=1\)
\(\Rightarrow x=1\)
Từ ( 4 )
\(\Rightarrow y^3+2y^2+3y+1=y^3\)
\(\Rightarrow2y^2+3y+1=0\)
\(\Rightarrow2y^2+2y+y+1=0\)
\(\Rightarrow2y\left(y+1\right)+y+1=0\)
\(\Rightarrow\left(2y+1\right)\left(y+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2y+1=0\\y+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-\dfrac{1}{2}\left(L;y\in Z\right)\\y=-1\end{matrix}\right.\)
\(\Rightarrow y^3=-1=x^3\)
\(\Rightarrow x=-1\)
Vậy \(\left(x,y\right)\in\left\{\left(-1,-1\right);\left(1,0\right)\right\}\)
a )
ĐKXĐ : \(y\ne0\) , \(y\ne-1\)
\(P=\left(\dfrac{2y^2+1}{y^3+1}-\dfrac{y}{y+y^2}\right):\left(1-\dfrac{y^2-2y-1}{y^2-y+1}\right)\)
\(=\left(\dfrac{2y^2+1}{\left(y+1\right)\left(y^2-y+1\right)}-\dfrac{1}{y+1}\right):\left(\dfrac{y^2-y+1-y^2+2y+1}{y^2-y+1}\right)\)
\(=\dfrac{2y^2+1-y^2+y-1}{\left(y+1\right)\left(y^2-y+1\right)}:\dfrac{y+2}{y^2-y+1}\)
\(=\dfrac{y\left(y+1\right)}{\left(y+1\right)\left(y^2-y+1\right)}\times\dfrac{y^2-y+1}{y+2}\)
\(=\dfrac{y}{y+2}\)
Câu b :
\(\left|2y+5\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2y+5=3\\-2y-5=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)
Thay \(y=-1\) vào P ta được : \(P=\dfrac{-1}{-1+2}=-1\)
Thay \(y=-4\) vào P ta được : \(P=\dfrac{-4}{-4+2}=2\)
Câu c :
T chỉ biết lập luận thôi :
Để P chia hết cho 4 thì \(\dfrac{y}{y+2}\) chia hết cho 4 hay \(\dfrac{y}{y+2}\) phải là bội của 4.
Do \(y< y+2\) nên \(\dfrac{y}{y+2}\) không thể là các số 4 ; 8 ;12 ;.........
Nên \(\dfrac{y}{y+2}=0\) thì sẽ chia hết cho 4 . \(\Leftrightarrow y=0\) ( Loại )
Nên không có giá trị y nào hết .
Câu d :
\(P=3-m>2\)
\(\Leftrightarrow-m>-1\)
\(\Leftrightarrow m< 1\)
a: \(P=\left(\dfrac{2y^2+1}{\left(y+1\right)\left(y^2-y+1\right)}-\dfrac{1}{y+1}\right):\dfrac{y^2-y+1-y^2+2y+1}{y^2-y+1}\)
\(=\dfrac{2y^2+1-y^2+y-1}{\left(y+1\right)\left(y^2-y+1\right)}\cdot\dfrac{y^2-y+1}{y+2}\)
\(=\dfrac{y^2+y}{\left(y+1\right)}\cdot\dfrac{1}{y+2}=\dfrac{y}{y+2}\)
b: |2y+5|=3
=>2y+5=3 hoặc 2y+5=-3
=>2y=-2 hoặc 2y=-8
=>y=-1(loại) hoặc y=-4(nhận)
Thay y=-4 vào P,ta được:
\(P=\dfrac{-4}{-4+2}=\dfrac{-4}{-2}=2\)
c: Để P chia hết cho 4 thì P=4k
=>y=4k(y+2)
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
(2y - 3)(y + 1) + y(y - 2) = 3(y + 2)2
<=> 2y2 - y - 3 + y2 - 2y = 3y2 + 12y + 12
<=> 3y2 - 3y - 3 - 3y2 - 12y - 12 = 0
<=> -15y - 15 = 0
<=> -15y = 15
<=> y = -1
Vậy S = {-1}
\(\left(2y-3\right)\left(y+1\right)+y\left(y-2\right)=3\left(y+2\right)^2\)
\(3y^2-3y-3=3y^2+12y+12\)
\(3y^2-3y-3-3y^2-12y-12=0\)
\(-15y-15=0\)
\(-15y=15\)
\(y=-1\)