Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2y^2+2y-3y-3+y^2-2y=3y^2+12y+12\)
=>-3y-3=12y+12
=>-15y=15
hay y=-1
ĐKXĐ: y<>0
\(y^2\left[\dfrac{1}{y\left(y-1\right)+1}-\dfrac{1}{y\left(y+1\right)+1}\right]=\dfrac{3}{y\left(y^4+y^2+1\right)}+\dfrac{2y-2}{y^2-y+1}\)
=>\(y^2\cdot\dfrac{y\left(y+1\right)+1-y\left(y-1\right)-1}{\left(y^2-y+1\right)\left(y^2+y+1\right)}=\dfrac{3}{y\left(y^2-y+1\right)\left(y^2+y+1\right)}+\dfrac{2y-2}{y^2-y+1}\)
=>\(y^2\cdot\dfrac{y\left(y+1-y+1\right)}{\left(y^2-y+1\right)\left(y^2+y+1\right)}=\dfrac{3+\left(2y-2\right)\cdot y\left(y^2+y+1\right)}{y\left(y^2-y+1\right)\left(y^2+y+1\right)}\)
=>\(y^2\cdot\dfrac{y\cdot2\cdot y}{\left(y^2-y+1\right)\cdot\left(y^2+y+1\right)\cdot y}=\dfrac{3+2y\left(y-1\right)\left(y^2+y+1\right)}{y\left(y^2-y+1\right)\left(y^2+y+1\right)}\)
=>\(2y^2\cdot y^2=3+2y\left(y^3-1\right)\)
=>\(2y^4=3+2y^4-2y\)
=>3-2y=0
=>2y=3
=>\(y=\dfrac{3}{2}\left(nhận\right)\)
\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)
\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
a.
\(x^2+4y^2+4xy=0\)
\(\Leftrightarrow\left(x+2y\right)^2=0\)
\(\Leftrightarrow x+2y=0\)
\(\Leftrightarrow x=-2y\)
Vậy pt đã cho có vô số nghiệm dạng \(\left(x;y\right)=\left(-2k;k\right)\) với k là số thực bất kì (nếu đề đúng)
b.
\(2y^4-9y^3+2y^2-9y=0\)
\(\Leftrightarrow2y^2\left(y^2+1\right)-9y\left(y^2+1\right)=0\)
\(\Leftrightarrow\left(2y^2-9y\right)\left(y^2+1\right)=0\)
\(\Leftrightarrow y\left(2y-9\right)\left(y^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\2y-9=0\\y^2+1=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{9}{2}\end{matrix}\right.\)
c. Em kiểm tra lại đề chỗ \(3xy^2\), đề đúng như vậy thì pt này ko giải được
c.
\(4y^2+1=4y\)
\(\Leftrightarrow4y^2-4y+1=0\)
\(\Leftrightarrow4y^2-2y-2y+1=0\)
\(\Leftrightarrow2y\left(2y-1\right)-\left(2y-1\right)=0\)
\(\Leftrightarrow\left(2y-1\right)^2=0\)
\(\Leftrightarrow y=0\)
d.
\(y^2-2y=80\)
\(\Leftrightarrow y^2-2y-80=0\)
\(\Leftrightarrow y^2-10y+8y-80=0\)
\(\Leftrightarrow y\left(y-10\right)+8\left(y-10\right)=0\)
\(\Leftrightarrow\left(y+8\right)\left(y-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y+8=0\\y-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-8\\y=10\end{matrix}\right.\)
\(\dfrac{y}{2\left(y-3\right)}=\dfrac{2y}{\left(y+1\right)\left(y-3\right)}-\dfrac{y}{2y+2}\)
\(DKXD:y\ne-1;y\ne3\)
<=>\(\dfrac{y\left(y+1\right)}{2\left(y-3\right)\left(y+1\right)}=\dfrac{4y}{2\left(y-3\right)\left(y+1\right)}-\dfrac{y\left(y-3\right)}{2\left(y+1\right)\left(y-3\right)}\)
=>y2+y=4y-y2+3y
<=>2y2-6y=0
<=>2y(y-3)=0
\(\left[{}\begin{matrix}y=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=0\left(TM\right)\\y=3\left(KTM\right)\end{matrix}\right.\)
vay..........