K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2018

\(\dfrac{y}{2\left(y-3\right)}=\dfrac{2y}{\left(y+1\right)\left(y-3\right)}-\dfrac{y}{2y+2}\)

\(DKXD:y\ne-1;y\ne3\)

<=>\(\dfrac{y\left(y+1\right)}{2\left(y-3\right)\left(y+1\right)}=\dfrac{4y}{2\left(y-3\right)\left(y+1\right)}-\dfrac{y\left(y-3\right)}{2\left(y+1\right)\left(y-3\right)}\)

=>y2+y=4y-y2+3y

<=>2y2-6y=0

<=>2y(y-3)=0

\(\left[{}\begin{matrix}y=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=0\left(TM\right)\\y=3\left(KTM\right)\end{matrix}\right.\)

vay..........

2 tháng 11 2024

BÀi 2:

Đặt x = 11...1(n chữ số 1), khi đó

a = x

b = 100..05(n-1 chữ số 0) = 100...00(n chữ số 0) + 5

b = 99...9(n chữ số 9) + 1 + 5 = 9x +6

=> \(ab+1=x\left(9x+6\right)+1\)

=> \(ab+1=9x^2+6x+1=\left(3x+1\right)^2\)

Vậy ab + 1 là 1 số chính phương

d) Ta có: \(\left(y+3\right)^2\ge0\forall y\)

\(\left(y+5\right)^2\ge0\forall y\)

Do đó: \(\left(y+3\right)^2+\left(y+5\right)^2\ge0\forall y\)

\(\left(y+3\right)^2+\left(y+5\right)^2=0\)

nên \(\left\{{}\begin{matrix}\left(y+3\right)^2=0\\\left(y+5\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+3=0\\y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-3\\y=-5\end{matrix}\right.\)

Vậy: y=-3 và y=-5

15 tháng 2 2020

Thì ra là làm như thế.... quaoo....

16 tháng 8 2016

đã tắt máy chưa để cho mình giải nha

16 tháng 8 2016

Giúp mik nha mọi người :)

16 tháng 8 2016

\(B=\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}\)

\(=\frac{x^2y-x^2z+zy^2-xy^2+z^2x-z^2y}{x^2\left(y-z\right)-y^2\left(y-z\right)}\)

\(=\frac{\left(x^2y-z^2y\right)-\left(xy^2-zy^2\right)-\left(x^2z-z^2x\right)}{\left(x^2-y^2\right)\left(y-z\right)}\)

\(=\frac{\left[y\left(x+z\right)-y^2-xz\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left(xy+zy-y^2-xz\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left[\left(xy-y^2\right)-\left(xz-zy\right)\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left[y\left(x-y\right)-z\left(x-y\right)\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{\left(y-z\right)\left(x-y\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)

\(=\frac{x-z}{x+y}\)

16 tháng 8 2016

\(A=\frac{\left(x^2-y\right)\left(y+1\right)+x^2y^2-1}{\left(x^2+y\right)\left(y+1\right)+x^2y^2+1}\)

\(=\frac{x^2y-y^2+x^2-y+x^2y^2-1}{x^2y+y^2+x^2+y+x^2y^2+1}\)

\(=\frac{\left(x^2y+x^2\right)+\left(x^2y^2-y^2\right)-\left(y+1\right)}{\left(x^2y+x^2\right)+\left(x^2y^2+y^2\right)+\left(y+1\right)}\)

\(=\frac{x^2\left(y+1\right)+y^2\left(x^2-1\right)-\left(y+1\right)}{x^2\left(y+1\right)+y^2\left(x^2+1\right)+\left(y+1\right)}\)

\(=\frac{\left(x^2-1\right)\left(y+1\right)+y^2\left(x^2-1\right)}{\left(x^2+1\right)\left(y+1\right)+y^2\left(x^2+1\right)}\)

\(=\frac{\left(x^2-1\right)\left(y^2+y+1\right)}{\left(x^2+1\right)\left(y^2+y+1\right)}\)

\(=\frac{x^2-1}{x^2+1}\)

bài 1:

a) x2 + 10x + 26 + y2 + 2y

= (x2 + 10x + 25) + (y2 + 2y + 1)

= (x + 5)2 + (y + 1)2

b) z2 - 6z + 5 - t2 - 4t

= (z - 3)2 - (t + 2)2

c) x2 - 2xy + 2y2 + 2y + 1

= (x2 - 2xy + y2) + (y2 + 2y + 1)

= (x - y)2 + (y + 1)2

d) 4x2 - 12x - y2 + 2y + 1

= (4x2 - 12x ) - (y2 + 2y + 1)

= ......................................

ok mk nhé!! 4545454654654765765767587876968345232513546546575675767867876876877687975675