Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-1}{x-3}>1\left(x\ne3\right)\)
\(\Leftrightarrow\dfrac{x-1-x+3}{x-3}>0\)
\(\Leftrightarrow2>0\)
Vậy \(S=\left\{2\right\}\)
-ĐKXĐ: \(x\ne3\)
\(\dfrac{x-1}{x-3}>1\)
\(\Leftrightarrow\dfrac{x-1}{x-3}-\dfrac{x-3}{x-3}>0\)
\(\Leftrightarrow\dfrac{x-1-x+3}{x-3}>0\)
\(\Leftrightarrow\dfrac{2}{x-3}>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
-Vậy tập nghiệm của BĐT là {x l x>3}
\(x\left(x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x=0\) hay \(x+3=0\) hay \(x^2+1=0\) (pt vô nghiệm vì \(x^2+1\ge1\))
\(\Leftrightarrow x=0\) hay \(x=-3\)
-Vậy \(S= \left\{0;-3\right\}\)
\(2\left(x^2-x\right)-x\left(x+2\right)+4=0\)
\(\Leftrightarrow2x^2-2x-x^2-2x+4=0\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
\(\frac{2-x}{2016}-1=\frac{1-x}{2017}+\frac{x}{2018}\)
\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-2018x}{4070306}+\frac{2017x}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-2018x+2017x}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-x}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}-1+1=\frac{1-x}{4070306}+1\)
\(\Rightarrow\frac{2-x}{2016}=\frac{1-x+4070306}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}=\frac{4070307-x}{4070306}\)
\(\Rightarrow4070306.\left(2-x\right)=2016.\left(4070307-x\right)\)
\(\Rightarrow8140612-4070306x=8205738912-2016x\)
\(\Rightarrow-4070306x+2016x=8205738912-8140612\)
\(\Rightarrow-4068290x=8197598300\)
\(\Rightarrow x=4,95\)
Vậy x=4,95
Chúc bn học tốt
\(\frac{x}{2017}+\frac{x-1}{2017}=\frac{x-2}{2019}-1\)
\(\Leftrightarrow\frac{2x-1}{2017}=\frac{x-2021}{2019}\)
\(\Leftrightarrow4038x-2019=2017x-4076357\)
\(\Leftrightarrow2021x=4074338\)
\(\Leftrightarrow x=\frac{4074338}{2021}\)(nếu sai thì ib vs mik nha)
Xét :
1. Nếu x = 2016 hoặc x = 2017 thì thỏa mãn đề bài
2. Nếu \(x< 2016\) thì \(\left|x-2016\right|^{2016}>0\) , \(\left|x-2017\right|^{2017}>1\)
Suy ra \(\left|x-2016\right|^{2016}+\left|x-2017\right|^{2017}>1\)=> Vô nghiệm.
3. Nếu \(x>2017\) thì \(\left|x-2016\right|^{2016}>1\) , \(\left|x-2017\right|^{2017}>0\)
Suy ra \(\left|x-2016\right|^{2016}+\left|x-2017\right|^{2017}>1\) => Vô nghiệm.
Vậy pt có hai nghiệm là ............................
Lời giải:
a.
PT $\Leftrightarrow (x+3)^2=2016^{2020}-17^{91}+9$
Ta thấy: $2016^{2020}-17^{91}+9\equiv 0-(-1)^{91}+0\equiv -1\equiv 2\pmod 3$
Mà 1 scp thì chia $3$ chỉ dư $0$ hoặc $1$ nên pt vô nghiệm.
b.
$x^2=2016(y-1)^2-2017^{2019}\equiv 0-1^{2019}\equiv 3\pmod 4$
Mà 1 scp chia $4$ chỉ dư $0$ hoặc $1$ nên vô lý.
Vậy pt vô nghiệm.
c.
$(x-1)^2=2017^{2017}+1\equiv 1^{2017}+1\equiv 2\pmod 4$
Mà 1 scp khi chia cho $4$ chỉ dư $0$ hoặc $1$ nên vô lý
Vậy pt vô nghiệm
d.
$(x+2)^2=2018^{10}+4\equiv (-1)^{10}+1\equiv 2\pmod 3$
Mà 1 scp khi chia $3$ dư $0$ hoặc $1$ nên vô lý
Vậy pt vô nghiệm.
Bài trên mình đã giải rồi, hai nghiệm là x = 2016 và x = 2017
\(\Leftrightarrow x\left(x-2017\right)-\left(x-2017\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2017\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2017=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2017\end{cases}}}\)
Vậy.....
\(x\left(x-2017\right)-x+2017=0\)
\(\Leftrightarrow x\left(x-2017\right)-\left(x-2017\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2017\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2017=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2017\end{cases}}\)