Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2-x}{2016}-1=\frac{1-x}{2017}+\frac{x}{2018}\)
\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-2018x}{4070306}+\frac{2017x}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-2018x+2017x}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-x}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}-1+1=\frac{1-x}{4070306}+1\)
\(\Rightarrow\frac{2-x}{2016}=\frac{1-x+4070306}{4070306}\)
\(\Rightarrow\frac{2-x}{2016}=\frac{4070307-x}{4070306}\)
\(\Rightarrow4070306.\left(2-x\right)=2016.\left(4070307-x\right)\)
\(\Rightarrow8140612-4070306x=8205738912-2016x\)
\(\Rightarrow-4070306x+2016x=8205738912-8140612\)
\(\Rightarrow-4068290x=8197598300\)
\(\Rightarrow x=4,95\)
Vậy x=4,95
Chúc bn học tốt
\(\frac{x-2}{2016}+\frac{x-3}{2017}+\frac{x-4}{2018}+3=0\)
\(\Leftrightarrow\left(\frac{x-2}{2016}+1\right)+\left(\frac{x-3}{2017}+1\right)+\left(\frac{x-4}{2018}+1\right)=0\)
\(\Leftrightarrow\frac{x+2014}{2016}+\frac{x+2014}{2017}+\frac{x+2014}{2018}=0\)
\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=0\)
Mà \(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\ne0\)
\(\Leftrightarrow x+2014=0\)
\(\Leftrightarrow x=-2014\)
Vậy \(x=-2014\)
Ta có : \(\frac{x+2}{2018}+\frac{x+3}{2017}+\frac{x+4}{2016}+\frac{x+2038}{6}=0\)
=> \(\frac{x+2}{2018}+1+\frac{x+3}{2017}+1+\frac{x+4}{2016}+1+\frac{x+2038}{6}-3=0\)
=> \(\frac{x+2}{2018}+\frac{2018}{2018}+\frac{x+3}{2017}+\frac{2017}{2017}+\frac{x+4}{2016}+\frac{2016}{2016}+\frac{x+2038}{6}-\frac{18}{6}=0\)
=> \(\frac{x+2000}{2018}+\frac{x+2000}{2017}+\frac{x+2000}{2016}+\frac{x+2000}{6}=0\)
=> \(\left(x+2000\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{6}\right)=0\)
=> \(x+2000=0\)
=> \(x=-2000\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{-2000\right\}\)
\(\frac{x-2}{2016}+\frac{x-3}{2017}+\frac{x-4}{2018}+3=0\\ \Leftrightarrow\left(\frac{x-2}{2016}+1\right)+\left(\frac{x-3}{2017}+1\right)+\left(\frac{x-4}{2018}+1\right)=0\\ \Leftrightarrow\frac{x+2014}{2016}+\frac{x+2014}{2017}+\frac{x+2014}{2018}=0\\ \Leftrightarrow\left(x+2014\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=0\\ Vì\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\ne0\\ \Rightarrow x+2014=0\\ \Leftrightarrow x=-2014\\ Vậy...\)
\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)
\(\Leftrightarrow2\left(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024\right)=x+y+z\)
\(\Leftrightarrow2\sqrt{x-2016}+2\sqrt{y-2017}+2\sqrt{z-2018}+6048=x+y+z\)
\(\Leftrightarrow x-2\sqrt{x-2016}+y-2\sqrt{y-2017}+z-2\sqrt{z-2018}+6048=0\)
\(\Leftrightarrow x-2016-2\sqrt{x-2016}+1+y-2017+2\sqrt{y-2017}+1+z-2018-2\sqrt{z-2018}+1=0\)
\(\Leftrightarrow\left(\sqrt{x-2016}-1\right)^2+\left(\sqrt{y-2017}-1\right)^2+\left(\sqrt{z-2018}-1\right)^2=0\)
\(ĐK:x\ge2016;y\ge2017;z\ge2018\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}-1=0\\\sqrt{y-2017}-1=0\\\sqrt{z-2018}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}=1\\\sqrt{y-2017}=1\\\sqrt{z-2018}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2017\\y=2018\\z=2019\end{cases}}}\)
\(\frac{x+1}{2019}+\frac{x+2}{2018}=\frac{x+2017}{3}+\frac{x+2016}{4}\)
\(\Leftrightarrow\frac{x+1}{2019}+1+\frac{x+2}{2018}+1=\frac{x+2017}{3}+1+\frac{x+2016}{4}+1\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}-\frac{x+2020}{3}-\frac{x+2020}{4}=0\)
\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)=0\)
Mà \(\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)\ne0\)
\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)
Vậy...
Ta có\(\frac{x-2}{2016}+\frac{x-3}{2017}+\frac{x-4}{2018}+3=0\)
\(\Leftrightarrow\frac{x-2}{2016}+1+\frac{x-3}{2017}+1+\frac{x-4}{2018}=0\)
\(\Leftrightarrow\frac{x+2014}{2016}+\frac{x+2014}{2017}+\frac{x+2014}{2018}=0\)
\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=0\) Vì \(\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)>0\)
\(\Rightarrow x+2014=0\)
\(\Rightarrow x=-2014\)