Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk: `x >=11`.
Đặt `sqrt(x-11) = a ( a >=0)`.
Phương trình trở thành: `sqrt(x+a) + sqrt(x-a) = 4`.
`<=> x + a + x - a + 2sqrt(x^2-a^2) = 16`.
`<=> 2x + 2sqrt(x^2-a^2) = 16.`
`<=> x + sqrt(x^2-a^2) = 8.`
`<=> sqrt(x^2-a^2) = 8-x`
`<=> x^2-a^2 = 64 - 16x + x^2`
`<=> 11-x = 64 - 16x.`
`<=> 15x = 53`.
`<=> x= 53/15` ( Không thỏa mãn ).
Vậy phương trình vô nghiệm.
\(\sqrt{x+11}-\sqrt{10-3x}=\sqrt{1-x}\left(1\ge x\ge-11\right)\)
\(\Leftrightarrow\left(x+11\right)+\left(10-3x\right)-2\sqrt{\left(x+11\right)\left(10-3x\right)}=1-x\\ \Leftrightarrow-2x+21-2\sqrt{-3x^2-23x+110}=1-x\\ \Leftrightarrow-2\sqrt{-3x^2-23x+110}=x-20\\ \Leftrightarrow4\left(-3x^2-23x+110\right)=x^2-40x+400\\ \Leftrightarrow-12x^2-92x+440=x^2-40x+400\\ \Leftrightarrow13x^2+52x-40=0\)
\(\Delta=52^2-4\cdot\left(-40\right)\cdot13=4784>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4\sqrt{299}-52}{26}\\x=\dfrac{4\sqrt{299}-52}{26}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2\sqrt{299}-26}{13}\\x=\dfrac{2\sqrt{299}-26}{13}\end{matrix}\right.\)
Tick nha
Lời giải:
ĐKXĐ: $x\geq 0; y\geq 1; z\geq 2$
PT \(\Leftrightarrow (x-2\sqrt{x}+1)+[(y-1)-4\sqrt{y-1}+4]+[(z-2)-6\sqrt{z-2}+9]=0\)
\(\Leftrightarrow (\sqrt{x}-1)^2+(\sqrt{y-1}-2)^2+(\sqrt{z-2}-3)^2=0\)
Vì \((\sqrt{x}-1)^2, (\sqrt{y-1}-2)^2, (\sqrt{z-2}-3)^2\geq 0\) nên để tổng của chúng bằng $0$ thì:
\((\sqrt{x}-1)^2=(\sqrt{y-1}-2)^2=(\sqrt{z-2}-3)^2=0\)
$\Leftrightarrow x=1; y=5; z=11$
\(\frac{1}{\sqrt{x+1}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+3}}+...+\frac{1}{\sqrt{x+2019}+\sqrt{x+2020}}=11\)
\(\Leftrightarrow\)\(\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(\sqrt{x+1}+\sqrt{x+2}\right)\left(\sqrt{x+2}-\sqrt{x+1}\right)}+\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(\sqrt{x+2}+\sqrt{x+3}\right)\left(\sqrt{x+3}-\sqrt{x+2}\right)}\)
\(+...+\frac{\sqrt{x+2020}-\sqrt{x+2019}}{\left(\sqrt{x+2019}+\sqrt{x+2020}\right)\left(\sqrt{x+2020}-\sqrt{x+2019}\right)}=11\)
\(\Leftrightarrow\)\(\frac{\sqrt{x+2}-\sqrt{x+1}}{x+2-x-1}+\frac{\sqrt{x+3}-\sqrt{x+2}}{x+3-x-2}+...+\frac{\sqrt{x+2020}-\sqrt{x+2019}}{x+2020-x-2019}=11\)
\(\Leftrightarrow\)\(\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+3}-\sqrt{x+2}+...+\sqrt{x+2020}-\sqrt{x+2019}=11\)
\(\Leftrightarrow\)\(\sqrt{x+2020}-\sqrt{x+1}=11\)
\(\Leftrightarrow\)\(\sqrt{x+2020}=11+\sqrt{x+1}\)
\(\Leftrightarrow\)\(x+2020=121+22\sqrt{x+1}+x+1\)
\(\Leftrightarrow\)\(22\sqrt{x+1}=1898\)
\(\Leftrightarrow\)\(\sqrt{x+1}=\frac{949}{11}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+1=\frac{900601}{121}\\x+1=\frac{-900601}{121}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{900480}{121}\\x=\frac{-900722}{121}\end{cases}}\)
Chúc bạn học tốt ~
PS : sai thì thui nhá
a, ĐK: \(x\ge11\)
\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\)
\(\Leftrightarrow x+\sqrt{x-11}+x-\sqrt{x-11}+2\sqrt{x^2-x+11}=16\)
\(\Leftrightarrow2x+2\sqrt{x^2-x+11}=16\)
\(\Leftrightarrow x+\sqrt{x^2-x+11}=8\)
Ta thấy \(x+\sqrt{x^2-x+11}>11>\text{}8\)
\(\Rightarrow\) phương trình vô nghiệm.
\(a,\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\left(x\ge11\right)\\ \Leftrightarrow x+\sqrt{x-11}+x-\sqrt{x-11}+2\sqrt{\left(x+\sqrt{x-11}\right)\left(x-\sqrt{x-11}\right)}=16\\ \Leftrightarrow2x+2\sqrt{x^2-x+11}=16\\ \Leftrightarrow x+\sqrt{x^2-x+11}=8\\ \Leftrightarrow\sqrt{x^2-x+11}=8-x\\ \Leftrightarrow x^2-x+11=x^2-16x+64\\ \Leftrightarrow15x=53\\ \Leftrightarrow x=\dfrac{53}{15}\left(ktm\right)\)
\(b,\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\\ \Leftrightarrow\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\\ \Leftrightarrow\left|\sqrt{2x-5}-1\right|=1-\sqrt{2x-5}\\ \Leftrightarrow\sqrt{2x-5}-1\le0\\ \Leftrightarrow\sqrt{2x-5}\le1\\ \Leftrightarrow2x-5\le1\Leftrightarrow x\le\dfrac{5}{2}\\ \Leftrightarrow x=\dfrac{5}{2}\)
Tham khảo:
1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24
\(\dfrac{1}{3}\sqrt[]{9x+9}-2\sqrt[]{x+1}+8\sqrt[]{\dfrac{4x+4}{25}}=11\)
\(\Leftrightarrow\dfrac{1}{3}\sqrt[]{9\left(x+1\right)}-2\sqrt[]{x+1}+8\sqrt[]{\dfrac{4\left(x+1\right)}{25}}=11\)
\(\Leftrightarrow\sqrt[]{x+1}-2\sqrt[]{x+1}+\dfrac{16}{5}\sqrt[]{x+1}=11\)
\(\Leftrightarrow\dfrac{11}{5}\sqrt[]{x+1}=11\)
\(\Leftrightarrow\sqrt[]{x+1}=5\)
\(\Leftrightarrow x+1=25\)
\(\Leftrightarrow x=24\)
Nhớ viết thêm điều kiện vào nữa, ở đây điều kiện là \(x\ge-1\)
Điều kiện thì bn tự tìm nhé
\(\left(1+1\right)\left(x-2+4-x\right)\ge\left(\sqrt{x-2}+\sqrt{4-x}\right)^2=>\sqrt{x-2}+\sqrt{4-x}\le2\left(buhihacopxki\right)\)
\(x^2-6x+11=\left(x-3\right)^2+2\ge2\)
dấu bằng xảy ra khi x=3 (tm)
đk: \(x\ge0\)
=> \(\sqrt{11+\sqrt{x}}\ge\sqrt{11}\)
=> VT \(\ge\sqrt{11}>1\)
=> pt vô nghiệm. Em kiểm tra lại đề nhé!