K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

Điều kiện: x khác (-3,-2,1,4)

PT <=> 

\(1+\frac{2}{x-1}+1-\frac{4}{x+2}+1-\frac{6}{x+3}+1+\frac{8}{x-4}=4\)

<=> \(\frac{1}{x-1}-\frac{2}{x+2}-\frac{3}{x+3}+\frac{4}{x-4}=0\)

<=> (x+2)(x+3)(x-4)-2(x-1)(x+3)(x-4)-3(x-1)(x+2)(x-4)+4(x-1)(x+2)(x+3)=0

<=> (x3+x2-14x-24)-2(x- 2x2-11x+12) - 3(x3 - 3x2- 6x+8) + 4(x3+4x2 + x-6) = 0

<=> x3+x2-14x-24-2x3 + 4x2+22x-24 - 3x3 + 9x2+ 18x-24 + 4x3+16x2 + 4x-24 = 0

<=> 30x2 + 30x -96=0

<=> 5x2 + 5x -16 = 0

Giải ra được: \(\orbr{\begin{cases}x_1=\frac{-5-\sqrt{345}}{10}\\x_2=\frac{-5+\sqrt{345}}{10}\end{cases}}\)

4 tháng 3 2018

hello bạn

Vừa lm xong mt bị sụp ... 

\(\frac{1}{x-1}+\frac{3}{3x+5}=\frac{2}{x+2}+\frac{1}{x+3}\)ĐKXĐ : \(x\ne1;-\frac{5}{3};-2;-3\)

\(\frac{1}{x-1}+\frac{3}{3x+5}-\frac{2}{x+2}-\frac{1}{x+3}=0\)

\(\frac{\left(3x+5\right)\left(x+2\right)\left(x+3\right)}{\left(x-1\right)\left(3x+5\right)\left(x+2\right)\left(x+3\right)}+\frac{3\left(x-1\right)\left(x+2\right)\left(x+3\right)}{\left(3x+5\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)}-\frac{2\left(x-1\right)\left(3x+5\right)\left(x+3\right)}{\left(x+2\right)\left(x-1\right)\left(3x-5\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(3x+5\right)\left(x+2\right)}{\left(x+3\right)\left(x-1\right)\left(3x+5\right)\left(x+2\right)}=0\)

Khử mẫu và rút gọn ta đc : \(-3x^3+2x^2+45x+52=0\)

Mời cao nhân giải tiếp.

6 tháng 11 2017

Đề \(\Leftrightarrow\frac{\left(x-2\right)\left(x+3\right)+\left(1+x\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{x+31}{x^2-9}\)\(\left(ĐKXĐ:x\ne3,-3\right)\)

\(\Leftrightarrow\frac{x^2+3x-2x-6+x-3+x^2-3x}{x^2-9}=\frac{x+31}{x^2-9}\)

\(\Leftrightarrow2x^2-x-9=x+31\Leftrightarrow2x^2-2x-40=0\Leftrightarrow x^2-x-20=0\)

\(\Leftrightarrow x^2-5x+4x-20=0\Leftrightarrow x\left(x-5\right)+4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\left(chọn\right)\\x=-4\left(chọn\right)\end{cases}}}\)

Vậy \(S=\left\{5;-4\right\}\)

22 tháng 10 2017

Đặt \(a = \frac{x+1}{x-2}, b = \frac{x-2}{x-3}\)

\(pt \Leftrightarrow a^2 + ab = 12b^2 \Leftrightarrow (a-3b)(a+4b) = 0\)