K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2021

\(\frac{x^2}{x-1}=\frac{x}{x-1}\left(ĐKXĐ:x\ne1\right)\)

\(\Rightarrow x^2=x\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(TMĐKXĐ\right)\\x=1\left(KTMĐKXĐ\right)\end{cases}}\)\(\Leftrightarrow x=0\)(tm ; thỏa mãn; k : không)

Vậy phương trình có nghiệm duy nhất: x = 0

9 tháng 3 2021

ĐKXĐ : x ≠ 1

từ pt => x2 = x

<=> x( x - 1 ) = 0

<=> x = 0 (tm) hoặc x = 1 (ktm)

Vậy x = 0

23 tháng 8 2020

Bài làm:

a) \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\)

=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\) hoặc \(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\) hoặc \(\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

Vậy tập nghiệm PT \(S=\left\{-2;-1;0;1\right\}\)

b) Nhận thấy \(\left(x-1\right)^4+\left(x-2\right)^4=0\)

\(\Leftrightarrow\left(x-1\right)^4=-\left(x-2\right)^4\)

Mà \(\hept{\begin{cases}\left(x-1\right)^4\ge0\\-\left(x-2\right)^4\le0\end{cases}\left(\forall x\right)}\) 

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^4=0\\-\left(x-2\right)^4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\x=2\end{cases}}\) (vô lý)

=> không tồn tại x thỏa mãn PT

23 tháng 8 2020

a) x( x - 1 )( x + 1 )( x + 2 ) = 0

<=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)\(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)\(\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

b) ( x - 1 )4 + ( x - 2 )4 = 0

<=> ( x - 1 )4 = -( x - 2 )4

\(\hept{\begin{cases}\left(x-1\right)^4\ge0\\-\left(x-2\right)^4\le0\end{cases}\forall}x\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\x=2\end{cases}}\)( mâu thuẫn )

=> Phương trình vô nghiệm

8 tháng 5 2019

Ta có : \(\left|x-1\right|+\left|x-2\right|\ge\left|x-1+x-2\right|=\left|2x-3\right|\)

Mà \(\left|x-1\right|+\left|x-2\right|=3x+1\)

\(\Rightarrow\left|2x-3\right|=3x+1\)(*)

ĐK : \(3x+1\ge0\Leftrightarrow x\ge-\frac{1}{3}\)

(*)\(\Leftrightarrow\orbr{\begin{cases}2x-3=3x+1\\2x-3=-3x-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=4\\5x=2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-4\left(loai\right)\\x=\frac{2}{5}\left(chon\right)\end{cases}}\)

Vậy....

29 tháng 1 2020

\(\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(x+2\right)=84\)

\(\Leftrightarrow\left(x^2-x+2\right)\left(x^2-x-6\right)=84\)

Đặt:\(t=x^2-x-2\) ta có phương trình sau:

\(t^2=100\)

\(\Leftrightarrow\orbr{\begin{cases}t=10\\t=-10\end{cases}}\)

Vậy phương trình có \(n_oS=\left\{-3;4\right\}\)

28 tháng 4 2019

\(\frac{3x-3}{x^2-1}=\frac{x}{x-2}-1\)ĐKXĐ : \(x\ne\pm1;x\ne2\)

\(\Leftrightarrow\frac{3\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x+1\right)\left(x-2\right)}=\frac{x\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\frac{3\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{x\left(x+1\right)-\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}\)

\(\Rightarrow3x-6=x^2+x-x^2+x+2\)

\(\Leftrightarrow3x-6-2x-2=0\)

\(\Leftrightarrow x-8=0\)

\(\Leftrightarrow x=8\)( thỏa )

Vậy....

28 tháng 4 2019

\(\frac{3x-3}{x^2-1}=\frac{x}{x-2}-\)\(1\)

\(\Leftrightarrow\) \(\frac{3.\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}\)\(=\frac{x}{x-2}-1\)

\(\Leftrightarrow\)\(\frac{3}{x+1}=\frac{x}{x-2}-1\)

ĐKXĐ : \(x\ne-1,2\)

\(\Leftrightarrow\)\(\frac{3.\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}\)\(=\frac{x.\left(x+1\right)}{\left(x+1\right).\left(x-2\right)}\)\(-\frac{\left(x+1\right).\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}\)

\(\Leftrightarrow\)\(3x-6=x^2+x-\left(x^2-2x+x-2\right)\)

\(\Leftrightarrow\)\(3x-6=x^2+x-x^2+x+2\)

\(\Leftrightarrow\)\(3x-x-x=6+2\)

\(\Leftrightarrow\) \(x=8\)

Vậy phương trình có nghiệm là : \(x=8\)

3 tháng 5 2017

       (2x-1)^2 -(2x+1)^2=4(x-3)

<=>(2x-1-2x-1)(2x-1+2x+1)=4(x-3)

<=> -2 . 4x = 4x -12

<=> -8x + (- 4x) = -12

<=> - 12x    = -12

<=>    x       = 1

Vậy phuwowg trình có nghiệm là x=1

ý b)

       2x -3 = 3(x -1) + x+2

<=> 2x - 3 =3x -3 +x +2

<=>2x -3x -x =3-3+2

<=> -2x   = 2

<=>   x = -1

Vậy ..........

Ở ý a bạn dùng hằng đẳng thức hiệu hai bình phương rồi tính toán như tìm x 

Ở ý b thì lại đơn giản chỉ cần nhân ra rồi chuyển vế nhớ đổi dấu khi chuyển vế 

                   CHÚC BẠN HỌC NGAY CANG GIỎI NHỚ CHO MK NHÉ

.

30 tháng 3 2016

Có phải đề sau không ?

\(3x+1+\left(2x-x+1\right)=0\)

Nếu là đề trên thì cách giải như sau

\(3x+1+\left(2x-x+1\right)=0\)

\(\Rightarrow3x+1+2x-x+1=0\)

\(\Rightarrow\left(3x+2x-x\right)+1+1=0\)

\(\Rightarrow4x+2=0\)

\(\Rightarrow4x=-2\Rightarrow x=\frac{-2}{4}=\frac{-1}{2}\)

Vậy \(x=\frac{-1}{2}\)

31 tháng 3 2016

ko phải là x mũ 3 vs lại x mũ 2

20 tháng 1 2017

Giải phương trình:

a) (x+2)- (x-2)= 12x(x-1) - 8

<=> (x+ 3.x2.2 + 3.x.2+ 23) - (x- 3.x2.2 + 3.x.2- 23) - [12x(x-1) - 8] = 0

<=> (x+ 6x+ 12x + 8) - (x- 6x+ 12x - 8) - (12x- 12x - 8) = 0

<=> x+ 6x+ 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x + 8 = 0

<=> 12x +32 = 0

<=> x =  \(\frac{-32}{12}\) = \(-2\frac{2}{3}\)         

                                                 Vậy phương trình có nghiệm duy nhất là  \(-2\frac{2}{3}\)

b) (3x-1)- 5(2x+1)+ (6x-3)(2x+1) = (x-1)2

<=> (9x- 6x + 1) - 5(4x+ 4x + 1) + 3(2x - 1)(2x + 1) - (x- 2x +1) = 0

<=> 9x- 6x + 1 - 20x- 20x - 5 + 3(4x2 - 1) - x2 + 2x -1 = 0

<=> 9x- 6x + 1 - 20x- 20x - 5 + 12x2 - 3 - x+ 2x -1 = 0

<=> -24x - 8 = 0

<=> x = \(\frac{-8}{24}\) = \(\frac{-1}{3}\)  

                  Vậy phương trình có nghiệm duy nhất là \(\frac{-1}{3}\)

 

11 tháng 9 2018

\(\frac{5}{\sqrt{x^2}+1}\)hay\(\frac{5}{\sqrt{x^2+1}}\)v
b)
Đặt \(\sqrt{x-2}=a\)\(\sqrt{4-x}=b\)
Ta có hpt:
\(\hept{\begin{cases}a+b=-a^2b^2+3\\a^2+b^2=2\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=-a^2b^2+3\\\left(a+b\right)^2-2ab-2=0\end{cases}}}\)


\(\Leftrightarrow\hept{\begin{cases}a^2+b^2=2\\\left(-a^2b^2+3\right)^2-2ab-2=0\end{cases}}\)
Đặt ab=t rồi giải hệ nhé bạn

11 tháng 9 2018

Phần b cách ngắn hơn nè:
\(\sqrt{x-2}-1+\sqrt{4-x}-1=x^2-6x+9\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2}\right)^2-1}{\sqrt{x-2}+1}+\frac{\left(\sqrt{4-x}\right)^2-1}{\sqrt{4-x}+1}=\left(x-3\right)^2\)
\(\Leftrightarrow\frac{x-3}{\sqrt{x-2}+1}+\frac{3-x}{\sqrt{4-x}+1}=\left(x-3\right)^2\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{x-2}+1}-\frac{1}{\sqrt{4-x}+1}-x+3\right)=0\)
\(\Rightarrow x=3\)