K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2022

vô nghiệm

30 tháng 3 2022

\(x^2+\left(14-x^2\right)=100\)

\(\Leftrightarrow\) \(x^2+14-x^2=100\)

\(\Leftrightarrow\) \(x^2-x^2=100-84\)

\(\Leftrightarrow\) \(0=86\) \(\left(\text{loại}\right)\)

Vậy \(\text{S = ∅ . }\)

Phương trình vô nghiệm

NV
8 tháng 3 2021

\(8x^3-12x^2y+6xy^2-y^3=8\)

\(\Leftrightarrow\left(2x-y\right)^3=8\)

\(\Leftrightarrow2x-y=2\)

\(\Rightarrow y=2x-2\)

Thế xuống pt dưới:

\(\left(x^2-2x-2\right)\left(-3x^2+6x-9\right)=14\)

Đặt \(x^2-2x=t\)

\(\Rightarrow\left(t-2\right)\left(-3t-9\right)=14\)

\(\Leftrightarrow...\)

6 tháng 11 2016

Điều kiện xác định : \(x,y,z\ge0\)

Đặt \(a=\sqrt{x}-13\) , \(b=\sqrt{y}-14\) , \(c=\sqrt{z}-15\)

Ta có hệ : \(\hept{\begin{cases}ab=2\\bc=6\\ac=3\end{cases}}\). Nhân các pt theo vế : \(\left(abc\right)^2=36\Leftrightarrow\orbr{\begin{cases}abc=6\\abc=-6\end{cases}}\)

TH1. Nếu abc = 6 thì kết hợp với mỗi pt ta được : \(\hept{\begin{cases}c=3\\b=2\\a=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=196\\y=256\\z=324\end{cases}}\)

TH2. Nếu \(abc=-6\) thì tương tự ta được \(\hept{\begin{cases}a=-1\\b=-2\\c=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=144\\y=144\\z=144\end{cases}}\)

Vậy ................................................

6 tháng 11 2016

CHIU THOI

K NHA @@@@@@@ Nguyễn Phúc Lộc 

AH
Akai Haruma
Giáo viên
18 tháng 3 2019

Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} x+y=14\\ 14^2-2xy=100\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+y=14\\ xy=48\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} y=14-x\\ xy=48\end{matrix}\right.\)

\(\Rightarrow x(14-x)=48\)

\(\Leftrightarrow x^2-14x+48=0\)

\(\Leftrightarrow (x-8)(x-6)=0\Rightarrow \left[\begin{matrix} x=8\\ x=6\end{matrix}\right.\)

Khi \(x=8\Rightarrow y=14-x=6\Rightarrow (x,y)=(8,6)\)

Khi \(x=6\Rightarrow y=14-x=8\Rightarrow (x,y)=(6,8)\)

Vậy..........

18 tháng 5 2021

\(\hept{\begin{cases}3x+y=14\\2x-y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+y=14\\5x=15\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}\)

Vậy hệ pt có nghiệm (x,y) =( 3,5) 

18 tháng 5 2021

\(\hept{\begin{cases}3x+y=14\\2x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}5x=15\\3x+y=14\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\3x+y=14\end{cases}}}\)

Thay x = 3 vào pt 2 ta được 

\(\left(2\right)\Rightarrow9+y=14\Leftrightarrow y=5\)

Vậy hệ pt có một nghiệm là ( x ; y ) = ( 3 ; 5 )

NV
28 tháng 1 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)^2-3\left(2x-y\right)=0\\x+2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(2x-y-3\right)=0\\x+2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-y=0\\x+2y=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y-3=0\\x+2y=0\end{matrix}\right.\end{matrix}\right.\) 

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{6}{5}\\y=-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)

NV
28 tháng 1 2021

b.

ĐKXĐ: \(\dfrac{2x-y}{x+y}>0\)

Đặt \(\sqrt{\dfrac{2x-y}{x+y}}=t>0\) pt đầu trở thành:

\(t+\dfrac{1}{t}=2\Leftrightarrow t^2-2t+1=0\)

\(\Leftrightarrow t=1\Leftrightarrow\sqrt{\dfrac{2x-y}{x+y}}=1\)

\(\Leftrightarrow2x-y=x+y\Leftrightarrow x=2y\)

Thay xuống pt dưới:

\(6y+y=14\Rightarrow y=2\)

\(\Rightarrow x=4\)