K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 3 2019

Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} x+y=14\\ 14^2-2xy=100\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+y=14\\ xy=48\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} y=14-x\\ xy=48\end{matrix}\right.\)

\(\Rightarrow x(14-x)=48\)

\(\Leftrightarrow x^2-14x+48=0\)

\(\Leftrightarrow (x-8)(x-6)=0\Rightarrow \left[\begin{matrix} x=8\\ x=6\end{matrix}\right.\)

Khi \(x=8\Rightarrow y=14-x=6\Rightarrow (x,y)=(8,6)\)

Khi \(x=6\Rightarrow y=14-x=8\Rightarrow (x,y)=(6,8)\)

Vậy..........

NV
28 tháng 1 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)^2-3\left(2x-y\right)=0\\x+2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(2x-y-3\right)=0\\x+2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-y=0\\x+2y=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y-3=0\\x+2y=0\end{matrix}\right.\end{matrix}\right.\) 

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{6}{5}\\y=-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)

NV
28 tháng 1 2021

b.

ĐKXĐ: \(\dfrac{2x-y}{x+y}>0\)

Đặt \(\sqrt{\dfrac{2x-y}{x+y}}=t>0\) pt đầu trở thành:

\(t+\dfrac{1}{t}=2\Leftrightarrow t^2-2t+1=0\)

\(\Leftrightarrow t=1\Leftrightarrow\sqrt{\dfrac{2x-y}{x+y}}=1\)

\(\Leftrightarrow2x-y=x+y\Leftrightarrow x=2y\)

Thay xuống pt dưới:

\(6y+y=14\Rightarrow y=2\)

\(\Rightarrow x=4\)

25 tháng 1 2022

Tham khảo

{x + y + z = 2
{2xy - z^2 = 4
<=> {z=2-y-x
       {z^2=2xy-4
<=>{z^2=4+y^2+x^2-4y+2xy-4x
      {z^2=2xy-4
=> 4+y^2+x^2-4y+2xy-4x=2xy-4
<=>8+y^2+x^2-4y-4x=0
<=> (x^2-4x+4)+(y^2-4y+4)=0
<=>(x-2)^2+(y-2)^2=0
<=>{(x-2)^2=0
      {(y-2)^2=0
<=>{ x=2
       {y=2
=>z=2-2-2=-2
vậy x=2,y=2,z=-2

a) Ta có: \(\left\{{}\begin{matrix}3x-2\left|y\right|=9\\2x+3\left|y\right|=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x-4\left|y\right|=18\\6x+9\left|y\right|=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-13\left|y\right|=15\\3x-2\left|y\right|=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|y\right|=\dfrac{-15}{13}\\3x-2\left|y\right|=9\end{matrix}\right.\Leftrightarrow\)Phương trình vô nghiệmVậy: \(S=\varnothing\)

28 tháng 2 2021

$\begin{cases}3x-2|y|=9\\2x+3|y|=1\\\end{cases}$

`<=>` $\begin{cases}6x-4|y|=18\\6x+9|y|=3\\\end{cases}$

`<=>` $\begin{cases}13|y|=-15(loại)\\|3x|-2|y|=9\\\end{cases}$

Vậy HPT vô nghiệm

7 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
31 tháng 1

Câu 1:

Từ PT(1) suy ra $x=7-2y$. Thay vào PT(2):

$(7-2y)^2+y^2-2(7-2y)y=1$
$\Leftrightarrow 4y^2-28y+49+y^2-14y+4y^2=1$

$\Leftrightarrow 9y^2-42y+48=0$

$\Leftrightarrow (y-2)(9y-24)=0$

$\Leftrightarrow y=2$ hoặc $y=\frac{8}{3}$

Nếu $y=2$ thì $x=7-2y=3$
Nếu $y=\frac{8}{3}$ thì $x=7-2y=\frac{5}{3}$

AH
Akai Haruma
Giáo viên
31 tháng 1

Câu 3: Bạn xem lại PT(2) là -x+y đúng không?

Câu 4:

$x^3-y^3=7$
$\Leftrightarrow (x-y)^3-3xy(x-y)=7$

$\Leftrightarrow 3^3-9xy=7$

$\Leftrightarrow xy=\frac{20}{9}$

Áp dụng định lý Viet đảo, với $x+(-y)=3$ và $x(-y)=\frac{-20}{9}$ thì $x,-y$ là nghiệm của pt:

$X^2-3X-\frac{20}{9}=0$

$\Rightarrow (x,-y)=(\frac{\sqrt{161}+9}{6}, \frac{-\sqrt{161}+9}{6})$ và hoán vị

$\Rightarrow (x,y)=(\frac{\sqrt{161}+9}{6}, \frac{\sqrt{161}-9}{6})$ và hoán vị.

 

NV
8 tháng 3 2021

\(8x^3-12x^2y+6xy^2-y^3=8\)

\(\Leftrightarrow\left(2x-y\right)^3=8\)

\(\Leftrightarrow2x-y=2\)

\(\Rightarrow y=2x-2\)

Thế xuống pt dưới:

\(\left(x^2-2x-2\right)\left(-3x^2+6x-9\right)=14\)

Đặt \(x^2-2x=t\)

\(\Rightarrow\left(t-2\right)\left(-3t-9\right)=14\)

\(\Leftrightarrow...\)

15 tháng 4 2023

Điều kiện: \(y\ge0\)

pt thứ nhất của hệ \(\Leftrightarrow\left(y-x+3\right)^2=0\) \(\Leftrightarrow y-x+3=0\) \(\Leftrightarrow y=x-3\)

Thay vào pt thứ hai của hệ, ta được  \(2x^2+3x+x-3-\left(3x+1\right)\sqrt{x-3}-2=0\)

\(\Leftrightarrow2x^2+4x-5=\left(3x+1\right)\sqrt{x-3}\)         \(\left(x\ge3\right)\)

\(\Rightarrow\left(2x^2+4x-5\right)^2=\left[\left(3x+1\right)\sqrt{x-3}\right]^2\)

\(\Leftrightarrow4x^4+16x^2+25+16x^3-20x^2-40x=\left(3x+1\right)^2\left(x-3\right)\)

\(\Leftrightarrow4x^4+16x^3-4x^2-40x+25=9x^3-21x^2-17x-3\)

\(\Leftrightarrow4x^4+7x^3+17x^2-23x+28=0\)

Đặt \(f\left(x\right)=4x^4+7x^3+17x^2-23x+28\)

\(f\left(x\right)=4x^4+7x^3+17x^2+4+4+...+4-23x+4\) (có 6 số 4 ở giữa)

\(f\left(x\right)\ge9\sqrt[9]{4x^4.7x^3.17x^2.4^6}-23x+4\) \(=\left(9\sqrt[9]{1949696}-23\right)x+4\)

Hiển nhiên \(9\sqrt[9]{1949696}>23\). Lại có \(x\ge3\) nên \(f\left(x\right)>0\), Như vậy pt \(f\left(x\right)=0\) vô nghiệm. Điều đó có nghĩa là phương trình đã cho vô nghiệm.

NV
12 tháng 12 2020

Đề bài chắc sai bạn:

\(2x^2+y^2+1=2xy\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+x^2+1=0\)

\(\Leftrightarrow\left(x-y\right)^2+x^2+1=0\) (vô lý)

Hệ vô nghiệm

NV
12 tháng 12 2020

Bạn xem lại đề, nghiệm của hệ này rất xấu (chính xác là ko thể giải được nếu ko áp dụng công thức nghiệm Cardano của pt bậc 3)