Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
\(4x^2-4x-5\left|2x-1\right|-5=0\)
\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)
\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)
\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)
TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)
\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)
\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)
TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)
\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)
\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh
Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }
1/
-x^3 -5x^2 + 4x +4
=> x1 =-5.5877............
x2=1.1895.............
x3=-0.6018............
(x^2+x)^2+4(x^2+x)=12
<=>x^4 + 2x^3 + x^2 + 4x^2 + 4x - 12 = 0
<=>x^4 + 2x^3 + 5x^2 + 10x - 6x - 12 = 0
<=>x^3(x+2) + 5x(x+2)-6(x+2) = 0
<=>(x+2)(x^3 + 5x - 6) = 0
<=>(x+2)(x^3 - x+ 6x - 6) =0
<=>(x+2)[(x-1)(x^2+x+1) + 6(x-1)] = 0
<=>(x+2)(x-1)(x^2+x+7) = 0
Ta có: x^2+x+7 >=0
<=>
[ x+2 = 0 <=> x = -2
[x - 1 = 0 <=> x = 1
Vậy pt có 2 ng x=1, x=-2
Đặt ẩn phụ là xong á?
Đặt \(x^2+x=t\).Phương trình trở thành:
\(t^2+4t-12=0\Leftrightarrow t^2-2t+6t-12=0\)
\(\Leftrightarrow t\left(t-2\right)+6\left(t-2\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+x-2=0\left(1\right)\\x^2+x+6=0\left(2\right)\end{cases}}\)
Giải (1) được hai nghiệm: x = 1; x = -2
Giải (2) ta có: \(x^2+x+6=\left(x+\frac{1}{2}\right)^2+\frac{23}{4}>0\forall x\)
Nên (2) vô nghiệm.
Vậy phương trình có 2 nghiệm x = 1; x = -2
\(x^3+x^2+4=0\)
\(\Leftrightarrow x^3-x^2+2x+2x^2-2x+4=0\)
\(\Leftrightarrow x\left(x^2-x+2\right)+2\left(x^2-x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-x+2\right)=0\)
Dễ thấy:
\(x^2-x+2=x^2-x+\frac{1}{4}+\frac{7}{4}=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\) (loại)
Nên \(x+2=0\Rightarrow x=-2\)
\(a.x^4+x^3+x+1=0\)
\(\Leftrightarrow\left(x^4+x^3\right)+\left(x+1\right)=0\)
\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+1=0\\x^3+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\x=-1\end{cases}}\). Vậy \(x=-1\)
\(b.x^4-x^2+2x+2=0\)
\(\Leftrightarrow\left(x^4-x^2\right)+\left(2x+2\right)=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow x^2\left(x+1\right)\left(x-1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2+x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+1=0\\2x^2+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\loại\end{cases}}\)
Vậy \(x=-1\)
\(x^4+x^3+x+1=0\)
\(\Leftrightarrow x^3\left(x+1\right)+x+1=0\)
\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2-x+1\right)=0\)
Mà \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy PT có TN \(S=\left\{-1\right\}.\)
\(x^4+x^3+3x^2+2x+2=0\)
\(\Leftrightarrow x^4+x^3+2x^2+x^2+2x+2=0\)
\(\Leftrightarrow\left(x^4+x^3+x^2\right)+\left(2x^2+2x+2\right)=0\)
\(\Leftrightarrow x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2+x+1\right)=0\)
\(\Rightarrow x^2+2=0\)hoặc \(x^2+x+1=0\)
\(\cdot x^2+2=0\Rightarrow x^2=-2\left(L\right)\)
\(\cdot x^2+x+1=0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(L\right)\)
Vậy pt vô nghiệm
P/S: bài này chưa rõ là x phức hay thực mà toán 8 nên mình giải thực
vô nghiệm
Trả lời :
- Phương trình vô nghiệm
- Chúc bạn học tốt !
- Tk cho mk nha !