K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

vô nghiệm

15 tháng 4 2020

Trả lời :

- Phương trình vô nghiệm

- Chúc bạn học tốt !

- Tk cho mk nha !

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

13 tháng 2 2017

CHỊU!@@@@@@@@@@@@

6 tháng 2 2021

\(4x^2-4x-5\left|2x-1\right|-5=0\)

\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)

\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)

\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)

TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)

\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)

\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)

TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)

\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)

\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh 

Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }

20 tháng 1 2016

1/

-x^3 -5x^2 + 4x +4

=> x1 =-5.5877............

    x2=1.1895.............

    x3=-0.6018............

16 tháng 5 2019

(x^2+x)^2+4(x^2+x)=12 
<=>x^4 + 2x^3 + x^2 + 4x^2 + 4x - 12 = 0 
<=>x^4 + 2x^3 + 5x^2 + 10x - 6x - 12 = 0 
<=>x^3(x+2) + 5x(x+2)-6(x+2) = 0 
<=>(x+2)(x^3 + 5x - 6) = 0 
<=>(x+2)(x^3 - x+ 6x - 6) =0 
<=>(x+2)[(x-1)(x^2+x+1) + 6(x-1)] = 0 
<=>(x+2)(x-1)(x^2+x+7) = 0 
Ta có: x^2+x+7 >=0 
<=>
​[ x+2 = 0 <=> x = -2     
[x - 1 = 0 <=> x = 1 
Vậy pt có 2 ng x=1, x=-2

17 tháng 5 2019

Đặt ẩn phụ là xong á?

Đặt \(x^2+x=t\).Phương trình trở thành:

\(t^2+4t-12=0\Leftrightarrow t^2-2t+6t-12=0\)

\(\Leftrightarrow t\left(t-2\right)+6\left(t-2\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+x-2=0\left(1\right)\\x^2+x+6=0\left(2\right)\end{cases}}\)

Giải (1) được hai nghiệm: x = 1; x = -2

Giải (2) ta có: \(x^2+x+6=\left(x+\frac{1}{2}\right)^2+\frac{23}{4}>0\forall x\)

Nên (2) vô nghiệm.

Vậy phương trình có 2 nghiệm x = 1; x = -2

12 tháng 6 2017

\(x^3+x^2+4=0\)

\(\Leftrightarrow x^3-x^2+2x+2x^2-2x+4=0\)

\(\Leftrightarrow x\left(x^2-x+2\right)+2\left(x^2-x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-x+2\right)=0\)

Dễ thấy: 

\(x^2-x+2=x^2-x+\frac{1}{4}+\frac{7}{4}=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\) (loại)

Nên \(x+2=0\Rightarrow x=-2\)

17 tháng 4 2019

\(x^4+x^2+6x-8=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)

\(\Leftrightarrow x=1\left(h\right)x=-2\left(h\right)x^2-x+4=0\)

Mà \(x^2-x+4=\left(x-\frac{1}{2}\right)^2+\frac{15}{4}>0\)

\(\Rightarrow x=1\left(h\right)x=-2\)

\(a.x^4+x^3+x+1=0\)

\(\Leftrightarrow\left(x^4+x^3\right)+\left(x+1\right)=0\)

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+1=0\\x^3+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\x=-1\end{cases}}\). Vậy \(x=-1\)

\(b.x^4-x^2+2x+2=0\)

\(\Leftrightarrow\left(x^4-x^2\right)+\left(2x+2\right)=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow x^2\left(x+1\right)\left(x-1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2+x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+1=0\\2x^2+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\loại\end{cases}}\)

Vậy \(x=-1\)

3 tháng 2 2017

\(x^4+x^3+x+1=0\)

\(\Leftrightarrow x^3\left(x+1\right)+x+1=0\)

\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x^2-x+1\right)=0\)

Mà \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy PT có TN \(S=\left\{-1\right\}.\)

1 tháng 3 2019

Phương trình này không có nghiệm là x = 1 nha bạn

15 tháng 1 2020

\(x^4+x^3+3x^2+2x+2=0\)

\(\Leftrightarrow x^4+x^3+2x^2+x^2+2x+2=0\)

\(\Leftrightarrow\left(x^4+x^3+x^2\right)+\left(2x^2+2x+2\right)=0\)

\(\Leftrightarrow x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(x^2+x+1\right)=0\)

\(\Rightarrow x^2+2=0\)hoặc \(x^2+x+1=0\)

\(\cdot x^2+2=0\Rightarrow x^2=-2\left(L\right)\)

\(\cdot x^2+x+1=0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(L\right)\)

Vậy pt vô nghiệm

P/S: bài này chưa rõ là x phức hay thực mà toán 8 nên mình giải thực