Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 4 > 3 (**). Để có bất đẳng thức ngược chiều là 4a < 3a ta phải nhân cả hai vế của (**) với số âm. Vậy a là số âm.
Ta có: -3 > -5 (***). Để có bất đẳng thức cùng chiều là -3a > -5a ta phải nhân cả hai vế của (***) với số dương. Vậy a là số dương.
\(ĐKXĐ:x\ne7\)
\(\frac{1-21a}{x+7}=1-3a\)
\(\Rightarrow1-21a=\left(1-3a\right)\left(x+7\right)\)
\(\Rightarrow1-21a=x-3ax+7-21a\)
\(\Rightarrow x-3ax=-6\)
\(\Rightarrow x\left(1-3a\right)=-6\)
Để x âm thì 1 - 3a dương hay \(1-3a>0\Leftrightarrow a< \frac{1}{3}\)
Vậy với mọi \(a< \frac{1}{3}\)thì phương trình có nghiệm âm.
\(\frac{1-21a}{x+7}=1-3a\) ĐK : x \(\ne\)-7
<=> 1 - 21a = ( 1-3a ) . ( x + 7)
<=> 1-21a = ( 1-3a ) . 7.(`1-3a )
<=> 1 - 21 a = ( 1-3a).x + 7 - 21 s
<=> ( 1-3a) .x = -6.Để PT có no 1 - 3a \(\ne0\Leftrightarrow a\ne\frac{1}{3}\)
a)12a<15a
Ta có:12<15 để có bất đẳng thức
12a<15a ta phải nhân cả 2 vế của bất đẳng thức 12<15 vs số a
Để đc bất đẳng thức cùng chiều thì a<0
b)4a<3a
Vì 4>3 và 4a<3a trái chiều.Để nhân 2 vế của bất đẳng thức 4>3 vs a đc bất đẳng thức trái chiều thì a<0
c)-3a>-5a
Từ -3 > -5 để có -3a > -5a thì a phải là số dương
a) \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)\(=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (vì a+b+c = 1)
\(=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
C/m BĐT phụ: \(\frac{x}{y}+\frac{y}{x}\ge2\) với x,y dương
\(\Leftrightarrow\)\(x^2+y^2\ge2xy\)
\(\Leftrightarrow\) \(x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\) \(\left(x-y\right)^2\ge0\) luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
Áp dụng BĐT trên ta có: \(\frac{a}{b}+\frac{b}{a}\ge2;\) \(\frac{a}{c}+\frac{c}{a}\ge2;\) \(\frac{b}{c}+\frac{c}{b}\ge2\)
\(\Rightarrow\)\(VT=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2+2+2=9\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
Vậy \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
a: 7x+35=0
=>7x=-35
=>x=-5
b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
=>8-x-8(x-7)=1
=>8-x-8x+56=1
=>-9x+64=1
=>-9x=-63
hay x=7(loại)
a, \(7x=-35\Leftrightarrow x=-5\)
b, đk : x khác 7
\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)
vậy pt vô nghiệm
2, thiếu đề
Dể \(\left|x-7\right|=3x-1\) có nghiệm thì \(3x-1\ge0\)
\(\Leftrightarrow x\ge\frac{1}{3}\)
Khi đó phương trình trở thành
\(\orbr{\begin{cases}x-7=3x-1\\x-7=1-3x\end{cases}\Leftrightarrow}\orbr{\begin{cases}-2x=6\\4x=8\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)
Mấy cái phương trình đó bạn tự giải nhé
Vậy.......................................................................................................
\(0,2x< 0,6\Leftrightarrow x< 3\)(cái này bạn cũng tự giải nốt nhé)
a) \(|x-7|=3x-1\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=1-3x\\x-7=3x-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=8\\-2x=6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{-3;2\right\}\)
b) \(0,2x< 0,6\)
\(\Leftrightarrow x< 3\)
Vậy phương trình có tập nghiệm \(\left\{x/x< 3\right\}\)
c) \(4a< 3a\)
\(\Leftrightarrow a< 0\)
Vậy nếu 4a < 3a thì a âm