K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

a)    \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)\(=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (vì  a+b+c = 1)

\(=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

C/m  BĐT phụ:   \(\frac{x}{y}+\frac{y}{x}\ge2\)   với  x,y dương

             \(\Leftrightarrow\)\(x^2+y^2\ge2xy\)

            \(\Leftrightarrow\) \(x^2-2xy+y^2\ge0\)

            \(\Leftrightarrow\) \(\left(x-y\right)^2\ge0\)  luôn đúng

Dấu "=" xảy ra   \(\Leftrightarrow\)\(x=y\)

Áp dụng BĐT trên ta có:   \(\frac{a}{b}+\frac{b}{a}\ge2;\) \(\frac{a}{c}+\frac{c}{a}\ge2;\) \(\frac{b}{c}+\frac{c}{b}\ge2\)

\(\Rightarrow\)\(VT=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2+2+2=9\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b=c\)

Vậy    \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b=c\)

13 tháng 4 2018

bó tay

13 tháng 4 2018

theo BĐT CÔ SI ta đc 

a+b+c \(\ge\)\(3\sqrt[3]{abc}\)

 1/ a + 1/ b + 1/c  \(\ge\)\(3\sqrt[3]{\frac{1}{abc}}\)

nhân vế vs vế ta đc ( a+ b+c) (  1/ a + 1/ b + 1/c ) \(\ge\)9

maf a +b+c = 1 nên ......bn tự lm nha

3 tháng 12 2017

Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)

\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)

Vậy \(x=y=\frac{1}{2}\)

Bài 1: 

\(\left\{{}\begin{matrix}a=5c+1\\b=5d+2\end{matrix}\right.\)

\(a^2+b^2=\left(5c+1\right)^2+\left(5d+2\right)^2\)

\(=25c^2+10c+1+25d^2+20d+4\)

\(=25c^2+25d^2+10c+20d+5\)

\(=5\left(5c^2+5d^2+2c+4d+1\right)⋮5\)

Bài 3: 

a: \(4x^2+12x+15=4x^2+12x+9+6=\left(2x+3\right)^2+6>=6\forall x\)

Dấu '=' xảy ra khi x=-3/2

b: \(9x^2-6x+5=9x^2-6x+1+4=\left(3x-1\right)^2+4>=4\forall x\)

Dấu '=' xảy ra khi x=1/3

26 tháng 3 2015

tach phan nguyên nhí bn

18 tháng 10 2021

a) \(=6a-3+15-5a=a+12\)

b) \(=25x-12x+4+35-14x=-x+39\)

d) \(=2ab+8a^2-b^2-4ab+2ab-6a^2=2a^2-b^2\)

e) \(=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4=-x^5+2x+1\)

f) \(=6y^3-3y^2+y-y+y^2-y^3-y^2+y=5y^3-3y^2+y\)

18 tháng 10 2021

a) 3( 2a -1) +5( 3-a)

   = 3. 2a -3.1 +5. 3- 5.a

   = 6a -3+ 15-5a

   =(6a -5a )+ (-3+ 15)

b) 25x - 4(3x - 1) +7(5 - 2x)

   = 25x -4.3x + 4.1 + 7.5 - 7.2

   =25x - 12x + 4 +35 - 14x

   = (25x-12x-14x)+(4+35)

   = -x=39

c) -12x3 -x1-2x-18x2

   = -36x-x-2x-36x

   = -75x

d) (2a-b)(b+4a)+2a(b-3a)

   = 2ab+2a4a-bb-b4a+2ab-2a3b

   = 2ab+8a2-b2-4ab+2ab-6a2

   =(2ab-4ab+2ab)+(8a2-6a2)-b2

   = 2a2-b2

e) (x+1)(2+x-x2+x3-x4)

   = (x+1)(2-2x)

   = x2-x2x+1.2-1.2x

   =(2x-2x)-2x2+2

   = -2x2+2

4 tháng 6 2016

Dễ thấy với a,b >0 thì (a+b)/2 ≥ √ab <=> 1/(a+b) ≤ 1/4 (1/a +1/b) 
Áp dụng bất đẳng thức Cauchy ta được 
1/(a+2b+3c)=1/[(a+c)+2(b+c)]≤ 1/4[1/(a+c)+1/2(b+c)] (lại áp dụng tiếp được) 
≤ 1/16a+1/16c+1/32b+1/32c 
=1/16a+1/32b+3/32c 
Trường hợp này dấu "=" xảy ra <=> a+c=2(b+c);a=c;b=c <=> c= 0 mâu thuẩn giả thiết 
Do đó dấu "=" không xảy ra 
Thế thì 1/(a+2b+3c)<1/16a+1/32b+3/32c (1) 
Tương tự 1/( b+2c+3a)<1/16b+1/32c+3/32a (2) 
1/ ( c+2a+3b) < 1/16c+1/32a+3/32b (3) 
Cộng (1)(2)(3) cho ta 
1/( a+2b+3c) + 1/( b+2c+3a) + 1/ ( c+2a+3b) <(1/16+1/32+3/32)(1/a+1/b+1/c) 
=3/16*(ab+bc+ca)abc= 3/16

tk nha mk trả lời đầu tiên đó!!!

a: Thay x=2/3 vào A, ta được:

\(A=\dfrac{3\cdot\dfrac{2}{3}+2}{\dfrac{2}{3}}=\dfrac{2+2}{\dfrac{2}{3}}=4\cdot\dfrac{3}{2}=6\)

b: \(B=\dfrac{x^2+1}{x^2-x}-\dfrac{2}{x-1}\)

\(=\dfrac{x^2+1}{x\left(x-1\right)}-\dfrac{2}{x-1}\)

\(=\dfrac{x^2+1-2x}{x\left(x-1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{x\left(x-1\right)}=\dfrac{x-1}{x}\)

c: P=A:B

\(=\dfrac{3x+2}{x}:\dfrac{x-1}{x}=\dfrac{3x+2}{x}\cdot\dfrac{x}{x-1}=\dfrac{3x+2}{x-1}\)

Để P là số nguyên thì \(3x+2⋮x-1\)

=>\(3x-3+5⋮x-1\)

=>\(5⋮x-1\)

=>\(x-1\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{2;0;6;-4\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;6;-4\right\}\)

Thay x=2 vào P, ta được:

\(P=\dfrac{3\cdot2+2}{2-1}=\dfrac{8}{1}=8\)

Thay x=6 vào P, ta được:

\(P=\dfrac{3\cdot6+2}{6-1}=\dfrac{18+2}{5}=\dfrac{20}{5}=4\)

Thay x=-4 vào P, ta được:

\(P=\dfrac{3\cdot\left(-4\right)+2}{-4-1}=\dfrac{-12+2}{-5}=\dfrac{-10}{-5}=2\)

Vì 2<4<8

nên khi x=-4 thì P có giá trị nguyên nhỏ nhất

1:

a: 2x-3=5

=>2x=8

=>x=4

b: (x+2)(3x-15)=0

=>(x-5)(x+2)=0

=>x=5 hoặc x=-2

2:

b: 3x-4<5x-6

=>-2x<-2

=>x>1