Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)\(=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (vì a+b+c = 1)
\(=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
C/m BĐT phụ: \(\frac{x}{y}+\frac{y}{x}\ge2\) với x,y dương
\(\Leftrightarrow\)\(x^2+y^2\ge2xy\)
\(\Leftrightarrow\) \(x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\) \(\left(x-y\right)^2\ge0\) luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
Áp dụng BĐT trên ta có: \(\frac{a}{b}+\frac{b}{a}\ge2;\) \(\frac{a}{c}+\frac{c}{a}\ge2;\) \(\frac{b}{c}+\frac{c}{b}\ge2\)
\(\Rightarrow\)\(VT=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2+2+2=9\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
Vậy \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
Dễ thấy với a,b >0 thì (a+b)/2 ≥ √ab <=> 1/(a+b) ≤ 1/4 (1/a +1/b)
Áp dụng bất đẳng thức Cauchy ta được
1/(a+2b+3c)=1/[(a+c)+2(b+c)]≤ 1/4[1/(a+c)+1/2(b+c)] (lại áp dụng tiếp được)
≤ 1/16a+1/16c+1/32b+1/32c
=1/16a+1/32b+3/32c
Trường hợp này dấu "=" xảy ra <=> a+c=2(b+c);a=c;b=c <=> c= 0 mâu thuẩn giả thiết
Do đó dấu "=" không xảy ra
Thế thì 1/(a+2b+3c)<1/16a+1/32b+3/32c (1)
Tương tự 1/( b+2c+3a)<1/16b+1/32c+3/32a (2)
1/ ( c+2a+3b) < 1/16c+1/32a+3/32b (3)
Cộng (1)(2)(3) cho ta
1/( a+2b+3c) + 1/( b+2c+3a) + 1/ ( c+2a+3b) <(1/16+1/32+3/32)(1/a+1/b+1/c)
=3/16*(ab+bc+ca)abc= 3/16
tk nha mk trả lời đầu tiên đó!!!
Nếu: \(x-1\ge0\) \(\Leftrightarrow\)\(x\ge1\) thì: \(\left|x-1\right|=x-1\)
Khi đó ta có: \(x^2-3x+2+x-1=0\)
\(\Leftrightarrow\) \(\left(x-1\right)^2=0\)
\(\Leftrightarrow\) \(x-1=0\)
\(\Leftrightarrow\) \(x=1\) (thỏa mãn)
Nếu \(x-1< 0\)\(\Leftrightarrow\)\(x< 1\) thì \(\left|x-1\right|=1-x\)
Khi đó ta có: \(x^2-3x+2+1-x=0\)
\(\Leftrightarrow\) \(x^2-4x+3=0\)
\(\Leftrightarrow\) \(\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\) \(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=3\end{cases}}\) (không thỏa mãn)
Vậy....
Lập bảng xét dấu :
x | 1 | ||
x-1 | - | 0 | + |
+) Nếu \(x\ge1\Leftrightarrow|x-1|=x-1\)
\(pt\Leftrightarrow x^2-3x+2+\left(x-1\right)=0\)
\(\Leftrightarrow x^2-3x+2+x-1=0\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\left(tm\right)\)
+) Nếu \(x< 1\Leftrightarrow|x-1|=1-x\)
\(pt\Leftrightarrow x^2-3x+2+\left(1-x\right)=0\)
\(\Leftrightarrow x^2-3x+2+1-x=0\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)-1=0\)
\(\Leftrightarrow\left(x-2\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=-\sqrt{1}\\x-2=\sqrt{1}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-2=-1\\x-2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\) ( loại )
Vậy phương trình có tập nghiệm \(S=\left\{1\right\}\)
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
BĐT
<=> \(\frac{3\left(a^2+b^2+c^2\right)+ab+bc+ac}{3\left(ac+bc+ac\right)}\ge\frac{8}{9}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
<=>\(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{a\left(a\left(b+c\right)+bc\right)}{b+c}+...\right)\)
<=> \(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(a^2+b^2+c^2+\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)
<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)
Mà \(\frac{abc}{b+c}\le abc.\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}\left(ab+bc\right)\)
Khi đó BĐT
<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{1}{2}\left(ab+bc+ac\right)\right)\)
=> \(a^2+b^2+c^2\ge ab+bc+ac\)(luôn đúng )
=> ĐPCM
Dấu bằng xảy ra khi a=b=c
Cách này chủ yếu biến đổi tương đương nên chắc phù hợp với lớp 8
Nếu sử dụng SOS nhìn vào sẽ làm đc liền vì có Nesbitt lẫn \(\frac{a^2+b^2+c^2}{ab+bc+ac}\)
a) \(\left(2x+1\right)^2-4\left(x+2\right)^2=12\)
\(\Leftrightarrow4x^2+4x+1-4\left(x^2+4x+4\right)=12\)
\(\Leftrightarrow4x^2+4x+1-4x^2-16x-16-12=0\)
\(\Leftrightarrow-12x-27=0\)
\(\Leftrightarrow x=\frac{-9}{4}\)
b) xem lại đề
c) \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x-3\right)\left(3-x\right)=1\)
\(\Leftrightarrow x^3-27-x\left(x-3\right)^2=1\)
\(\Leftrightarrow x^3-27-x\left(x^2-6x+9\right)-1=0\)
\(\Leftrightarrow x^3-28-x^3+6x^2-9x=0\)
\(\Leftrightarrow6x^2-9x-28=0\)
\(\Leftrightarrow6\left(x^2-\frac{3}{2}x-\frac{14}{3}\right)=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{3}{4}+\frac{9}{16}-\frac{251}{48}=0\)
\(\Leftrightarrow\left(x-\frac{3}{4}\right)^2=\frac{251}{48}=\left(\pm\sqrt{\frac{251}{48}}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3}{4}=\sqrt{\frac{251}{48}}=\frac{\sqrt{753}}{12}\\x-\frac{3}{4}=-\sqrt{\frac{251}{48}}=\frac{-\sqrt{753}}{12}\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{\pm\sqrt{753}}{12}+\frac{3}{4}=\frac{9\pm\sqrt{753}}{12}\)
d) \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-19\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+19=0\)
\(\Leftrightarrow12x+15=0\)
\(\Leftrightarrow x=\frac{-5}{4}\)
Theo giả thiết:
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Dễ thấy \(VT\ge0\forall a;b;c\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)(đpcm)
1)
Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)
Dấu "=" xảy ra khi a=b=c
2)
\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)
Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)
\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)
bó tay
theo BĐT CÔ SI ta đc
a+b+c \(\ge\)\(3\sqrt[3]{abc}\)
1/ a + 1/ b + 1/c \(\ge\)\(3\sqrt[3]{\frac{1}{abc}}\)
nhân vế vs vế ta đc ( a+ b+c) ( 1/ a + 1/ b + 1/c ) \(\ge\)9
maf a +b+c = 1 nên ......bn tự lm nha