Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 câu hỏi post 2 câu thôi là chán rồi ==" bạn gắng post lại từng câu 1 mình làm cho nhé :v
Đặt \(\hept{\begin{cases}\sqrt{x+1}=a\left(a\ge0\right)\\\sqrt{x-2}=b\left(b\ge0\right)\end{cases}}\)
\(\Rightarrow a^2-b^2=3\)
\(1PT\Leftrightarrow\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
Tới đây tự làm tiếp nhé
Mình hướng dẫn nhé :)
- Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)
Xét trường hợp để tìm nghiệm nhé :)
- \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
- \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
- \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
- \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.
a)Đk:\(0\le x\le1\)
\(\sqrt{x}+\sqrt{1-x}+\sqrt{x+1}=2\)
\(pt\Leftrightarrow\sqrt{x}+\sqrt{1-x}-1+\sqrt{x+1}-1=0\)
\(\Leftrightarrow\sqrt{x}+\frac{1-x-1}{\sqrt{1-x}+1}+\frac{x+1-1}{\sqrt{x+1}-1}=0\)
\(\Leftrightarrow\frac{x}{\sqrt{x}}-\frac{x}{\sqrt{1-x}+1}+\frac{x}{\sqrt{x+1}-1}=0\)
\(\Leftrightarrow x\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{1-x}+1}+\frac{1}{\sqrt{x+1}-1}\right)=0\)
\(\Rightarrow x=0\)
b)\(\frac{3x+3}{\sqrt{x}}=4+\frac{x+1}{\sqrt{x^2-x+1}}\)
\(pt\Leftrightarrow\frac{3x+3}{\sqrt{x}}-6=\frac{x+1}{\sqrt{x^2-x+1}}-2\)
\(\Leftrightarrow\frac{3x+3-6\sqrt{x}}{\sqrt{x}}=\frac{x+1-2\sqrt{x^2-x+1}}{\sqrt{x^2-x+1}}\)
\(\Leftrightarrow\frac{\frac{\left(3x+3\right)^2-36x}{3x+3+6\sqrt{x}}}{\sqrt{x}}=\frac{\frac{\left(x+1\right)^2-4\left(x^2-x+1\right)}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}\)
\(\Leftrightarrow\frac{\frac{9x^2+18x+9-36x}{3x+3+6\sqrt{x}}}{\sqrt{x}}=\frac{\frac{x^2+2x+1-4x^2+4x-4}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}\)
\(\Leftrightarrow\frac{\frac{9x^2-18x+9}{3x+3+6\sqrt{x}}}{\sqrt{x}}-\frac{\frac{-3x^2+6x-3}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}=0\)
\(\Leftrightarrow\frac{\frac{9\left(x-1\right)^2}{3x+3+6\sqrt{x}}}{\sqrt{x}}+\frac{\frac{3\left(x-1\right)^2}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}=0\)
\(\Leftrightarrow3\left(x-1\right)^2\left(\frac{\frac{3}{3x+3+6\sqrt{x}}}{\sqrt{x}}+\frac{\frac{1}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}\right)=0\)
Dêx thấy: \(\frac{\frac{3}{3x+3+6\sqrt{x}}}{\sqrt{x}}+\frac{\frac{1}{x+1+2\sqrt{x^2-x+1}}}{\sqrt{x^2-x+1}}>0\forall....\)
\(\Rightarrow3\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
Cửa hàng đã bán hết 618kg bí đỏ và 619kg cà rốt. Bí đỏ có giá bán 10 nghìn đồng 1kg và cà rốt có giá bán là 9 nghìn đồng 1kg. Hỏi cửa hàng bán bí đỏ được bao nhiêu tiền và bán cà rốt được bao nhiêu tiền?