\(\sqrt {x+3} ×x^4= {2x^4 -2018x+2018}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2018

<=> \(x^4\left(\sqrt{x+3}-2\right)\)\(+2018\left(x-1\right)=0\)

<=>\(x^4\left(\dfrac{x+3-4}{\sqrt{x+3}+2}\right)+2018\left(x-1\right)=0\)

<=>\(x^{\text{4}}\left(\dfrac{x-1}{\sqrt{x+3}+2}\right)+2018\left(x-1\right)=0\)

<=>\(\left(x-1\right)\left(\dfrac{x^4}{\sqrt{x+3}+2}+2018\right)=0\)

=>x-1=0 <=>x=1

8 tháng 12 2018

Chiều mk lm cho

Đang dùng đt

8 tháng 12 2018

Ta có:

\(\sqrt{x^2-2018x+2018}+\sqrt{x^2-1009x+1009}=2x\)

\(\Leftrightarrow x-\sqrt{\left(2018x-2018\right)}+x-\sqrt{\left(1009x-1009\right)}=2x\)

\(\Leftrightarrow2x-\sqrt{\left(2018x-2018\right)}-\sqrt{\left(1009x-1009\right)}=2x\)

\(\Leftrightarrow\sqrt{\left(2018x\right)-2018}+\sqrt{\left(1009x-1009\right)}=0\)

\(\Leftrightarrow\sqrt{\left(2018x-2018\right)}=\sqrt{\left(1009x-1009\right)}=0\)

\(\Leftrightarrow2018x-2018=1009x-1009=0\Leftrightarrow x=1\)

3 tháng 1 2018

Xét :\(VT^2=2020-x+x-2018+2\sqrt{\left(2012-x\right)\left(x-2018\right)}\)

\(=2+2\sqrt{\left(2012-x\right)\left(x-2018\right)}\)

Áp dụng bđt AM - GM ta có : \(2\sqrt{\left(2012-x\right)\left(x-2018\right)}\le2012-x+x-2018=2\)

\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)(1)

Xét \(VP=x^2-4038x+4076363=\left(x^2-4038x+4076361\right)+2\)

\(=\left(x-2019\right)^2+2\ge2\) (2)

Từ (1);(2) \(\Rightarrow VT\le2\le VP\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2020-x=x-2018\\\left(x-2019\right)^2=0\end{cases}\Rightarrow x=2019\left(TM\right)}\)

Vậy nghiệm của PT là \(S=\left\{2019\right\}\)

11 tháng 3 2018

ĐK: \(x\ge\frac{2017}{2018}\)

\(pt\Leftrightarrow2017\sqrt{2017x-2016}-2017+\sqrt{2018x-2017}-1=0\)

\(\Leftrightarrow2017\frac{2017\left(x-1\right)}{\sqrt{2017x-2016}+1}+\frac{2018\left(x-1\right)}{\sqrt{2018x-2017}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{2017^2}{\sqrt{2017x-2016}+1}+\frac{2018}{\sqrt{2018x-2017}+1}\right)=0\)

Dễ thấy với \(x\ge\frac{2017}{2018}\Rightarrow\)\(\frac{2017^2}{\sqrt{2017x-2016}+1}+\frac{2018}{\sqrt{2018x-2017}+1}>0\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

29 tháng 5 2018

\(x-4\sqrt{x}-6=0\)

\(< =>\sqrt{x}^2-4\sqrt{x}-6=0\)

\(\left(a=1;b=-4;b'=-2;c=-6\right)\)

\(\Delta'=b'^2-ac\)

    \(=\left(-2\right)^2-1.\left(-6\right)\)

   \(=4+6\)

   \(=10>0\)

\(\sqrt{\Delta'}=\sqrt{10}\)

Phương trình có 2 nghiệm phân biệt 

\(\sqrt{x_1}=\frac{2+\sqrt{10}}{1}=2+\sqrt{10}\)

\(\sqrt{x_2}=\frac{2-\sqrt{10}}{1}=2-\sqrt{10}\)

Với \(\sqrt{x_1}=2+\sqrt{10}\) suy ra \(x_1=\left(2+\sqrt{10}\right)^2=14+4\sqrt{10}\)

Với \(\sqrt{x_2}=2-\sqrt{10}\) suy ra \(x_2=\left(2-\sqrt{10}\right)^2=14-4\sqrt{10}\)

HỌC TỐT !!! 

7 tháng 11 2018

ĐKXĐ: x > y

Ta có hệ \(\hept{\begin{cases}\sqrt{x+y}+\sqrt{x-y}=4\\x^2+y^2=18\end{cases}}\)

         \(\Leftrightarrow\hept{\begin{cases}x+y+2\sqrt{\left(x+y\right)\left(x-y\right)}+x-y=16\\x^2+y^2=18\end{cases}}\)

       \(\Leftrightarrow\hept{\begin{cases}2\sqrt{x^2-y^2}=16-2x\\x^2+y^2=18\end{cases}}\)

      \(\Leftrightarrow\hept{\begin{cases}\sqrt{x^2-y^2}=8-x\\x^2+y^2=18\end{cases}}\)

      \(\Leftrightarrow\hept{\begin{cases}8-x\ge0\\x^2-y^2=\left(8-x\right)^2\\x^2+y^2=18\end{cases}}\)

     \(\Leftrightarrow\hept{\begin{cases}x\le8\\x^2-y^2=64-16x+x^2\\x^2+y^2=18\end{cases}}\)

     \(\Leftrightarrow\hept{\begin{cases}x\le8\\-y^2=64-16x\\x^2+y^2=18\end{cases}}\)

     \(\Leftrightarrow\hept{\begin{cases}x\le8\\y^2=16x-64\\x^2+y^2-y^2=18-16x+64\end{cases}}\)

    \(\Leftrightarrow\hept{\begin{cases}x\le8\left(1\right)\\y^2=16x-64\left(2\right)\\x^2+16x-82=0\left(3\right)\end{cases}}\)

Giải (3) \(x^2+16x-82=0\)

          \(\Leftrightarrow x^2+16x+64=146\)

         \(\Leftrightarrow\left(x+8\right)^2=146\)

         \(\Leftrightarrow x+8=\pm\sqrt{146}\)

         \(\Leftrightarrow x=\pm\sqrt{146}-8\)(Thỏa mãn (1) )

Thay vào (2) tìm được y rồi so sánh ĐKXĐ => KL

7 tháng 11 2018

@Fabulous Joker cảm ơn ông nhiều lắm
mai tôi phải nộp bài r