Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> \(x^4\left(\sqrt{x+3}-2\right)\)\(+2018\left(x-1\right)=0\)
<=>\(x^4\left(\dfrac{x+3-4}{\sqrt{x+3}+2}\right)+2018\left(x-1\right)=0\)
<=>\(x^{\text{4}}\left(\dfrac{x-1}{\sqrt{x+3}+2}\right)+2018\left(x-1\right)=0\)
<=>\(\left(x-1\right)\left(\dfrac{x^4}{\sqrt{x+3}+2}+2018\right)=0\)
=>x-1=0 <=>x=1
Ta có:
\(\sqrt{x^2-2018x+2018}+\sqrt{x^2-1009x+1009}=2x\)
\(\Leftrightarrow x-\sqrt{\left(2018x-2018\right)}+x-\sqrt{\left(1009x-1009\right)}=2x\)
\(\Leftrightarrow2x-\sqrt{\left(2018x-2018\right)}-\sqrt{\left(1009x-1009\right)}=2x\)
\(\Leftrightarrow\sqrt{\left(2018x\right)-2018}+\sqrt{\left(1009x-1009\right)}=0\)
\(\Leftrightarrow\sqrt{\left(2018x-2018\right)}=\sqrt{\left(1009x-1009\right)}=0\)
\(\Leftrightarrow2018x-2018=1009x-1009=0\Leftrightarrow x=1\)
Xét :\(VT^2=2020-x+x-2018+2\sqrt{\left(2012-x\right)\left(x-2018\right)}\)
\(=2+2\sqrt{\left(2012-x\right)\left(x-2018\right)}\)
Áp dụng bđt AM - GM ta có : \(2\sqrt{\left(2012-x\right)\left(x-2018\right)}\le2012-x+x-2018=2\)
\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)(1)
Xét \(VP=x^2-4038x+4076363=\left(x^2-4038x+4076361\right)+2\)
\(=\left(x-2019\right)^2+2\ge2\) (2)
Từ (1);(2) \(\Rightarrow VT\le2\le VP\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2020-x=x-2018\\\left(x-2019\right)^2=0\end{cases}\Rightarrow x=2019\left(TM\right)}\)
Vậy nghiệm của PT là \(S=\left\{2019\right\}\)
ĐK: \(x\ge\frac{2017}{2018}\)
\(pt\Leftrightarrow2017\sqrt{2017x-2016}-2017+\sqrt{2018x-2017}-1=0\)
\(\Leftrightarrow2017\frac{2017\left(x-1\right)}{\sqrt{2017x-2016}+1}+\frac{2018\left(x-1\right)}{\sqrt{2018x-2017}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2017^2}{\sqrt{2017x-2016}+1}+\frac{2018}{\sqrt{2018x-2017}+1}\right)=0\)
Dễ thấy với \(x\ge\frac{2017}{2018}\Rightarrow\)\(\frac{2017^2}{\sqrt{2017x-2016}+1}+\frac{2018}{\sqrt{2018x-2017}+1}>0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(x-4\sqrt{x}-6=0\)
\(< =>\sqrt{x}^2-4\sqrt{x}-6=0\)
\(\left(a=1;b=-4;b'=-2;c=-6\right)\)
\(\Delta'=b'^2-ac\)
\(=\left(-2\right)^2-1.\left(-6\right)\)
\(=4+6\)
\(=10>0\)
\(\sqrt{\Delta'}=\sqrt{10}\)
Phương trình có 2 nghiệm phân biệt
\(\sqrt{x_1}=\frac{2+\sqrt{10}}{1}=2+\sqrt{10}\)
\(\sqrt{x_2}=\frac{2-\sqrt{10}}{1}=2-\sqrt{10}\)
Với \(\sqrt{x_1}=2+\sqrt{10}\) suy ra \(x_1=\left(2+\sqrt{10}\right)^2=14+4\sqrt{10}\)
Với \(\sqrt{x_2}=2-\sqrt{10}\) suy ra \(x_2=\left(2-\sqrt{10}\right)^2=14-4\sqrt{10}\)
HỌC TỐT !!!
ĐKXĐ: x > y
Ta có hệ \(\hept{\begin{cases}\sqrt{x+y}+\sqrt{x-y}=4\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+2\sqrt{\left(x+y\right)\left(x-y\right)}+x-y=16\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x^2-y^2}=16-2x\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x^2-y^2}=8-x\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}8-x\ge0\\x^2-y^2=\left(8-x\right)^2\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le8\\x^2-y^2=64-16x+x^2\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le8\\-y^2=64-16x\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le8\\y^2=16x-64\\x^2+y^2-y^2=18-16x+64\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le8\left(1\right)\\y^2=16x-64\left(2\right)\\x^2+16x-82=0\left(3\right)\end{cases}}\)
Giải (3) \(x^2+16x-82=0\)
\(\Leftrightarrow x^2+16x+64=146\)
\(\Leftrightarrow\left(x+8\right)^2=146\)
\(\Leftrightarrow x+8=\pm\sqrt{146}\)
\(\Leftrightarrow x=\pm\sqrt{146}-8\)(Thỏa mãn (1) )
Thay vào (2) tìm được y rồi so sánh ĐKXĐ => KL
@Fabulous Joker cảm ơn ông nhiều lắm
mai tôi phải nộp bài r