Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(x+2\right)\left(y+3\right)+\left(x+4\right)\left(y+1\right)=2xy+4x+6y+10=30\)
Đặt \(x+2=a,y+1=b\)
Ta có hệ mới
\(\hept{\begin{cases}\frac{1}{a\left(a+2\right)}+\frac{1}{b\left(b+2\right)}=\frac{2}{15}\left(1\right)\\a\left(b+2\right)+b\left(a+2\right)=30\left(2\right)\end{cases}}\)
Lấy (1).(2)
=>\(\frac{a}{b}+\frac{b}{a}+\frac{a+2}{b+2}+\frac{b+2}{a+2}=4\)
Nếu a,b khác dấu
=> \(VT\le-4\)(loại)
Nếu a,b cùng dấu
=> \(VT\ge4\)
Dấu bằng xảy ra khi a=b=3 hoặc a=b=-5
=> x=1,y=2 hoặc x=-7,y=-6 (thỏa mãn điều kiện xác định)
Vậy x=1,y=2 hoặc x=-7,y=-6
bn nào giải thick cho mk đoạn cùng dấu và trái dấu với
tại sao cùng dấu lại >=4
trái dấu lại<=4
và làm thế nào để tính a,b
pt tương đương:(\frac{1}{x}-\frac{1}{x+1})^2+2.\frac{1}{x(x+1)}=15
Đặt \frac{1}{x(x+1)}=t rồi giải tiếp pt bậc 2
Điều kiện \(x\ne1.\)
Đặt \(y=\frac{x-8}{x-1}\to xy\left(x+y\right)=-15,y\left(x-1\right)=x-8\to xy\left(x+y\right)=-15,xy=x+y-8.\)
Đặt \(a=xy,b=x+y\to ab=-15,a=b-8\to b^2-8b=-15\to b-4=\pm1\to b=5,3.\)
Với \(b=5\to a=-3\to xy=-3,x+y=5\to x,y\) là nghiệm phương trình \(t^2-5t-3=0\), hay \(t=\frac{5\pm\sqrt{37}}{2}\), suy ra \(x=\frac{5\pm\sqrt{37}}{2}\)
Với \(b=3\to a=-5\to xy=-5,x+y=3\to x,y\) là nghiệm của \(t^2-3t-5=0\to t=\frac{3\pm\sqrt{29}}{2}\) suy ra \(x=\frac{3\pm\sqrt{29}}{2}.\)
Vậy phương trình có bốn nghiệm \(x=\frac{5\pm\sqrt{37}}{2}\) và \(x=\frac{3\pm\sqrt{29}}{2}.\)
bạn tham khảo thêm cách này nha Shonogeki No Soma
ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\\x\ne-1\end{cases}}\)
Đặt \(a=\left(x-1\right)^3;b=x^3;c=\left(x+1\right)^3\)
pt đã cho đc viết lại thành
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=-b\\b=-c\\c=-a\end{cases}}\) (kí hiệu [..] mới đúng nha)
- TH1: a = -b hay \(\left(x-1\right)^3=-x^3\) \(\Leftrightarrow2x^3-3x^2+3x-1=0\) \(\Leftrightarrow x=\frac{1}{2}\) (Nhận)
- TH2: b = -c hay \(\left(x+1\right)^3=-x^3\) \(\Leftrightarrow2x^3+3x^2+3x+1=0\) \(\Leftrightarrow x=-\frac{1}{2}\) (Nhận)
- TH3: c = -a hay \(\left(x+1\right)^3=-\left(x-1\right)^3\) \(\Leftrightarrow x=0\) (Loại)
KL: \(S=\left\{\frac{1}{2};-\frac{1}{2}\right\}\)
\(\frac{1}{\left(x-1\right)^3}+\frac{1}{\left(x+1\right)^3}+\frac{1}{x^3}=\frac{1}{3x\left(x^2+2\right)}\)
\(\Leftrightarrow4x^8+15x^6+12x^4+8x^2-6=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\left(x^2+3\right)\left(x^2-x+1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{1}{2}\end{cases}}\)
Giải phương trình: \(\frac{1}{\left(x^2+x+1\right)^2}+\frac{1}{\left(x^2+x+2\right)^2}=\frac{5}{4}\)
Đặt \(x^2+x+1=a\)
\(pt\Leftrightarrow\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}=\frac{5}{4}.\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{a+1}\right)^2+\frac{2}{a\left(a+1\right)}-\frac{5}{4}=0\)
\(\Leftrightarrow\left(\frac{1}{a\left(a+1\right)}\right)^2+\frac{2}{a\left(a+1\right)}-\frac{5}{4}=0\)
đặt \(\frac{1}{a\left(a+1\right)}=b\)
\(\Leftrightarrow b^2+2b-\frac{5}{4}=0\Leftrightarrow4b^2+8b-5=0\)
\(\left(2b-1\right)\left(2b+5\right)=0.\)
đến đây tự full đi.
bam may tinh pFX 570 ra lien