Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x-16+\sqrt{x-15}-1=0\)0
\(\Leftrightarrow x-16+\frac{x-16}{\sqrt{x-15}+1}\)= 0
\(\Leftrightarrow\left(x-16\right)\cdot\left(1+\frac{1}{\sqrt{x-15}+1}\right)\)=0
\(\frac{x^2}{\left(x+2\right)}=3x^2-6x-3,x\ne-2\)
\(\Rightarrow x^2=\left(3x^2-6x-3\right)\left(x+2\right)^2\)
\(\Rightarrow x^2-\left(3x^2-6x-3\right)\left(x+2\right)^2=0\)
\(\Rightarrow x^2-\left(3x^4+12x^3+12x^2-6x^3-24x^2-24x-3x^2-12x-12\right)=0\)
\(\Rightarrow x^2-\left(3x^4+6x^3-15x^2-36x-12\right)=0\)
\(\Rightarrow16x^2-3x^4-6x^3+36x+12=0\)
\(\Rightarrow-2x^2+18x^2-3x^4-6x^3+36x+12=0\)
\(\Rightarrow-x^2\left(3x^2+6x+2\right)+\left(3x^2+6x+2\right)=0\)
\(\Rightarrow-\left(3x^2+6x+2\right)\left(x^2-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-\left(3x^2+6x=2\right)=0\\x^2-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{-3+\sqrt{3}}{3}\\\frac{-3-\sqrt{3}}{3},x\ne-2\\x=-\sqrt{6}\\x=\sqrt{6}\end{matrix}\right.\)
b)\(\frac{1}{x+\sqrt{x^2+x}}+\frac{1}{x-\sqrt{x^2+x}}=x\)
\(\Leftrightarrow\frac{x-\sqrt{x^2+x}}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}+\frac{x+\sqrt{x^2+x}}{\left(x-\sqrt{x^2+x}\right)\left(x+\sqrt{x^2+x}\right)}-\frac{x\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{x-\sqrt{x^2+x}+x+\sqrt{x^2+x}-x^2}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{-x^2+2x}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
\(\Leftrightarrow\frac{-x\left(x+2\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)
Dễ thấy: x=0 ko là nghiệm nên \(x+2=0\Rightarrow x=-2\)
c)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)
\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}=0\)
\(\Leftrightarrow\left(3x-2\right)\left(\frac{2}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4}{\sqrt{9x^2+16}}\right)=0\)
\(\Leftrightarrow x=\frac{2}{3}\)
\(\left(x-1\right)\left(\sqrt{3x+4}-1\right)=3\left(x+1\right)\)
\(\Leftrightarrow x=7\)
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
Điều kiện \(x\ne1.\)
Đặt \(y=\frac{x-8}{x-1}\to xy\left(x+y\right)=-15,y\left(x-1\right)=x-8\to xy\left(x+y\right)=-15,xy=x+y-8.\)
Đặt \(a=xy,b=x+y\to ab=-15,a=b-8\to b^2-8b=-15\to b-4=\pm1\to b=5,3.\)
Với \(b=5\to a=-3\to xy=-3,x+y=5\to x,y\) là nghiệm phương trình \(t^2-5t-3=0\), hay \(t=\frac{5\pm\sqrt{37}}{2}\), suy ra \(x=\frac{5\pm\sqrt{37}}{2}\)
Với \(b=3\to a=-5\to xy=-5,x+y=3\to x,y\) là nghiệm của \(t^2-3t-5=0\to t=\frac{3\pm\sqrt{29}}{2}\) suy ra \(x=\frac{3\pm\sqrt{29}}{2}.\)
Vậy phương trình có bốn nghiệm \(x=\frac{5\pm\sqrt{37}}{2}\) và \(x=\frac{3\pm\sqrt{29}}{2}.\)