Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{36\left(x-6\right)2}{\left(x^2-36\right)2}+\frac{36\left(x+6\right).2}{\left(x^2-36\right)2}=\frac{9\left(x^2-36\right)}{2\left(x^2-36\right)}\)
=>\(\frac{-432+72x}{\left(x^2-36\right)2}+\frac{432+72x}{\left(x^2-36\right)2}=\frac{-324+9x^2}{2\left(x^2-36\right)}\)
=>\(-432+72x+432+72x=-324+9x^2\)
=>\(-9x^2+144x+324=0=>\left(x-18\right)\left(x+2\right)=0\)
=>\(\left\{\begin{matrix}x-18=0\\x+2=0\end{matrix}\right.\)=>\(\left\{\begin{matrix}x=18\\x=-2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là S={-2;18}
\(\Leftrightarrow36\left(x+6\right)+36\left(x-6\right)=\dfrac{9}{2}\left(x^2-36\right)\)
\(\Leftrightarrow x^2\cdot\dfrac{9}{2}-162-72x=0\)
\(\Leftrightarrow9x^2-144x-324=0\)
\(\Leftrightarrow x^2-16x-36=0\)
=>(x-18)(x+2)=0
=>x=18 hoặc x=-2
ĐKXĐ:\(x\ne\pm6\)
\(\dfrac{36}{x-6}+\dfrac{36}{x+6}=4,5\\ \Leftrightarrow36\left(\dfrac{1}{x-6}+\dfrac{1}{x+6}\right)=4,5\\ \Leftrightarrow\dfrac{x+6}{\left(x-6\right)\left(x+6\right)}+\dfrac{x-6}{\left(x-6\right)\left(x+6\right)}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{x+6+x-6}{x^2-36}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{2x}{x^2-36}=\dfrac{1}{8}\\ \Leftrightarrow x^2-36=16x\\ \Leftrightarrow x^2-16x-36=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(18x+36\right)=0\\ \Leftrightarrow x\left(x+2\right)-18\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x-18\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\left(tm\right)\\x=18\left(tm\right)\end{matrix}\right.\)
\(\dfrac{36}{x+6}+\dfrac{36}{x-6}=4,5\)
\(\Leftrightarrow36\left(x-6\right)+36\left(x+6\right)=4,5\left(x^2-36\right)\)
\(\Leftrightarrow36x-216+36x+216=4,5x^2-162\)
\(\Leftrightarrow-4,5x^2+72x+162=0\)
\(\Leftrightarrow\left(x-18\right)\left(-4,5x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=18\\x=-2\end{matrix}\right.\)
bạn làm rõ hơn ở chỗ này đc ko, mk ko hiểu
⇔−4,5x2+72x+162=0⇔−4,5x2+72x+162=0
⇔(x−18)(−4,5x−9)=0
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\)
\(\Leftrightarrow\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
\(\Leftrightarrow\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
có : \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
\(\Leftrightarrow x-100=0\)
\(\Leftrightarrow x=100\)
\(pt\)\(\Leftrightarrow\)\(({x-90\over10}-1)+({x-76\over12}-2)+\)\(+({x-58\over14}-3)+({x-36\over16}-4)+({x-15\over17}-5)=0\)
\(\Leftrightarrow\)\(({x-100\over10})+({x-100\over12})+({x-100\over14})+({x-100\over16})\)
\(+({x-100\over17})=0\)
\(\Leftrightarrow\)\((x-100)({1\over10}+{1\over12}+{1\over14}+{1\over16}+{1\over17})=0\)
\(\Rightarrow\)\(x-100=0\)
\(\Rightarrow\)\(x=100\)
Bài làm
\(36^2+\frac{1}{x^2}+21x+\frac{7}{2x}-18=0\)
\(\Leftrightarrow\frac{36^2.2.x^2}{2x^2}+\frac{2}{2x^2}+\frac{2.x^2.21x}{2x^2}+\frac{7x}{2x^2}-\frac{2.x^2.18}{2x^2}=0\)
\(\Rightarrow2592x^2+2+42x^3+7x-36x^2=0\)
\(\Leftrightarrow2556x^2+42x^3+7x+2=0\)
tự giải nốt.
Không có cách khác à bạn? Mình làm cách đấy rồi mà thấy nó dài vl luôn nên đăng nên hỏi coi có cách khác không
pt trên \(< =>1296+\frac{2}{2x^2}+\frac{7x}{2x^2}+21x-18=0\)
\(< =>1278+\frac{7x+2}{2x}+21x=0\)
\(< =>1278+\frac{9}{2}=-21x\)
\(< =>\frac{2565}{2}=-21x\)
\(< =>x=\frac{2565}{-42}=-\frac{855}{14}\)
Ko chắc lắm :P
\(\frac{36}{x+6}+\frac{36}{x-6}=\) \(4,5\)\(\left(ĐKCĐ:x\ne\pm6\right)\)
\(\Leftrightarrow\frac{36\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}+\frac{36\left(x+6\right)}{\left(x+6\right)\left(x-6\right)}\)\(=\frac{4,5\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}\)
\(\Leftrightarrow\frac{36x-216}{\left(x-6\right)\left(x+6\right)}+\frac{36x+216}{\left(x-6\right)\left(x+6\right)}\)\(=\frac{4,5x^2-162}{\left(x-6\right)\left(x+6\right)}\)
\(\Rightarrow36x-216+36x+216=4,5x^2-162\)
( đến đây giải phương trình ra rồi đối chiếu đkxđ là xong )
\(\frac{36}{x+6}+\frac{36}{x-6}=4,5\)
\(\frac{36}{x+6}+\frac{36}{x-6}=\frac{4,5\left(x+6\right)\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}\)
\(DKXD:\hept{\begin{cases}x+6\ne0\\x-6\ne0\\\left(x+6\right)\left(x-6\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-6\\x\ne6\end{cases}}\)
\(\frac{72x}{\left(x+6\right)\left(x-6\right)}=\frac{4,5\left(x+6\right)\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}\)
\(4,5x^2+72x-162=0\)
\(4,5x^2-9x+81x-162=0\)
\(4,5\left(x-2\right)+81\left(x-2\right)=0\)
\(\left(x-2\right)\left(4,5x-81\right)=0\)
\(\left(x-2\right)4,5\left(x-18\right)=0\)
\(\hept{\begin{cases}x-2=0\\x-18=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=18\end{cases}}\)