Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{392-x}{32}+\frac{390-x}{34}+\frac{388-x}{36}+\frac{386-x}{38}+\frac{384-x}{40}=-5\)
\(\Leftrightarrow\left(\frac{392-x}{32}+1\right)+\left(\frac{390-x}{34}+1\right)+\left(\frac{388-x}{36}+1\right)+\left(\frac{386-x}{38}+1\right)+\left(\frac{384-x}{40}\right)=0\)
\(\Leftrightarrow\frac{424-x}{32}+\frac{424-x}{34}+\frac{424-x}{36}+\frac{424-x}{38}+\frac{424-x}{40}=0\)
\(\Leftrightarrow\left(424-x\right)\left(\frac{1}{32}+\frac{1}{34}+\frac{1}{36}+\frac{1}{38}+\frac{1}{40}\right)=0\)
Mà : \(\frac{1}{32}+\frac{1}{34}+\frac{1}{36}+\frac{1}{38}+\frac{1}{40}\ne0\)
\(\Leftrightarrow424-x=0\)
\(\Leftrightarrow x=424\)
Vậy x = 424
Câu x ) là bằng - 5 nhé mấy bạn. Làm giúp mình tất cả nhé ! Mình cảm ơn nhiều lắm !
\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)+\left(\frac{x-3}{2011}-1\right)=\left(\frac{x-4}{2010}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-6}{2008}-1\right)\)
\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2013}{2011}=\frac{x-2014}{2010}+\frac{x-2014}{2009}+\frac{x-2014}{2008}\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
tự làm nốt~
kudo shinichi làm sai ở chỗ:
\(\frac{x-2013}{2011}\)phải là \(\frac{x-2014}{2011}\)mới đúng nhé
ta có : \(\dfrac{392-x}{32}+\dfrac{390-x}{34}+\dfrac{388-x}{36}+\dfrac{386-x}{38}\)+\(\dfrac{384-x}{40}=-5\)
\(\Leftrightarrow\)\(\dfrac{392-x}{32}+1+\dfrac{390-x}{34}+1+\dfrac{388-x}{36}+1\)+\(\dfrac{384-x}{40}+1=0\)
\(\Leftrightarrow\)\(\dfrac{424-x}{32}+\dfrac{424-x}{34}+\dfrac{424-x}{36}+\dfrac{424-x}{38}+\dfrac{424-x}{40}=0\)\(\Leftrightarrow\left(424-x\right)\left(\dfrac{1}{32}+\dfrac{1}{34}+\dfrac{1}{36}+\dfrac{1}{38}+\dfrac{1}{40}\right)=0\)
\(\Leftrightarrow x=424\)(vì \(\dfrac{1}{32}+\dfrac{1}{34}+\dfrac{1}{36}+\dfrac{1}{38}+\dfrac{1}{40}\ne0\))
Vậy tập nghiệm của phương trình là s=\(\left\{424\right\}\)
a) \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Rightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
Mà \(\left(\frac{1}{9}< \frac{1}{8}< \frac{1}{7}< \frac{1}{6}\right)\)nên \(\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)< 0\)
\(\Rightarrow x+10=0\Rightarrow x=-10\)
Vậy x = -10
b) \(\frac{x}{2012}+\frac{x+1}{2013}+\frac{x+2}{2014}+\frac{x+3}{2015}+\frac{x+4}{2016}=5\)
\(\Rightarrow\frac{x}{2012}-1+\frac{x+1}{2013}-1+\frac{x+2}{2014}-1\)
\(+\frac{x+3}{2015}-1+\frac{x+4}{2016}-1=0\)
\(\Rightarrow\frac{x-2012}{2012}+\frac{x-2012}{2013}+\frac{x-2012}{2014}\)\(+\frac{x-2012}{2015}+\frac{x-2012}{2016}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)=0\)
Mà \(\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)nên x - 2012 = 0
Vậy x = 2012
a, (x+1)/9 +1 + (x+2)/8 = (x+3)/7 + 1 + (x+4)/6 + 1
<=> (x+10)/9 +(x+10)/8 = (x+10)/7 + (x+10)/6
<=> (x+10). (1/9 +1/8 - 1/7 -1/6) =0
vì 1/9 +1/8 -1/7 - 1/6 khác 0
=> x+10=0
=> x=-10
\(\left(8x^3-60x^2+150x-125\right)-\left(27x^3-108x^2+144x-64\right)+\left(x^3+3x^2+3x+1\right)=0\)
\(-18x^3+51x^2+9x-60=0\)
\(\left(2x-5\right)\left(x+1\right)\left(3x-4\right)=0\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-1\\x=\frac{4}{3}\end{array}\right.\)
Ta có :
\(\frac{x+1}{2012}+\frac{x+2}{2011}+\frac{x+3}{2010}=\frac{x+4}{2009}+\frac{x+5}{2008}+\frac{x+6}{2007}\)
\(\left(\frac{x+1}{2012}+1\right)+\left(\frac{x+2}{2011}+1\right)+\left(\frac{x+3}{2010}+1\right)=\left(\frac{x+4}{2009}+1\right)+\left(\frac{x+5}{2008}+1\right)+\left(\frac{x+6}{2007}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+2013}{2012}+\frac{x+2013}{2011}+\frac{x+2013}{2010}=\frac{x+2013}{2009}+\frac{x+2013}{2008}+\frac{x+2013}{2007}\)
\(\Leftrightarrow\)\(\left(x+2013\right).\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)=\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\right)\)
\(\Leftrightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}=\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(1\right)\)
Mà \(\frac{1}{2012}< \frac{1}{2009}\)\(;\)\(\frac{1}{2011}< \frac{1}{2008}\)\(;\)\(\frac{1}{2010}< \frac{1}{2007}\)
\(\Rightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}< \frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra không có giá trị nào của \(x\)thoả mãn đề bài
Vậy không có gía trị nào của \(x\)hay \(x\in\left\{\varnothing\right\}\)
a, Ta có : \(\frac{392-x}{32}+\frac{390-x}{34}+\frac{388-x}{36}+\frac{386-x}{38}+\frac{384-x}{40}=-5\)
=> \(\frac{392-x}{32}+1+\frac{390-x}{34}+1+\frac{388-x}{36}+1+\frac{386-x}{38}+1+\frac{384-x}{40}+1=-5+5=0\)
=> \(\frac{424-x}{32}+\frac{424-x}{34}+\frac{424-x}{36}+\frac{424-x}{38}+\frac{424-x}{40}=0\)
=> \(\left(424-x\right)\left(\frac{1}{32}+\frac{1}{34}+\frac{1}{36}+\frac{1}{38}+\frac{1}{40}\right)=0\)
=> \(424-x=0\)
=> \(x=424\)
Vậy phương trình có nghiệm là x = 424 .
b, Ta có : \(\frac{x+1}{2014}+\frac{x+3}{2012}=\frac{x+5}{2010}+\frac{x+6}{2009}\)
=> \(\frac{x+1}{2014}+1+\frac{x+3}{2012}+1=\frac{x+5}{2010}+1+\frac{x+6}{2009}+1\)
=> \(\frac{x+2015}{2014}+\frac{x+2015}{2012}=\frac{x+2015}{2010}+\frac{x+2015}{2009}\)
=> \(\frac{x+2015}{2014}+\frac{x+2015}{2012}-\frac{x+2015}{2010}-\frac{x+2015}{2009}=0\)
=> \(\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2012}-\frac{1}{2010}-\frac{1}{2009}\right)=0\)
=> \(x+2015=0\)
=> \(x=-2015\)
Vậy phương trình có nghiệm là x = -2015 .
a) \(\frac{392-x}{32}+\frac{390-x}{34}+\frac{388-x}{36}+\frac{386-x}{38}+\frac{384-x}{40}=-5\)
<=> \(\frac{392-x}{32}+1+\frac{390-x}{34}+1+\frac{388-x}{36}+1+\frac{386-x}{38}+1+\frac{384-x}{40}=0\)
<=> \(\frac{424-x}{32}+\frac{424-x}{34}+\frac{424-x}{36}+\frac{424-x}{40}=0\)
<=> \(\left(424-x\right)\left(\frac{1}{32}+\frac{1}{34}+\frac{1}{36}+\frac{1}{40}\right)=0\)
<=> 424 - x = 0
<=> x = 424
Vậy S = {424}
b) \(\frac{x+1}{2014}+\frac{x+3}{2012}=\frac{x+5}{2010}+\frac{x+6}{2009}\)
<=> \(\left(\frac{x+1}{2014}+1\right)+\left(\frac{x+3}{2012}+1\right)=\left(\frac{x+5}{2010}+1\right)+\left(\frac{x+6}{2009}+1\right)\)
<=> \(\frac{x+2015}{2014}+\frac{x+2015}{2012}=\frac{x+2015}{2010}+\frac{x+2015}{2009}\)
<=> \(\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2012}-\frac{1}{2010}-\frac{1}{2009}\right)=0\)
<=> x + 2015 = 0
<=> x= -2015
Vậy S = {-2015}