Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 3x-6=0
⇔3(x-2)=0
mà 3≠0
nên x-2=0
hay x=2
Vậy: x=2
b) Ta có: (2x+6)(2x+12)=0
⇔\(2\left(x+3\right)\cdot2\cdot\left(x+6\right)=0\)
mà 2≠0
nên \(\left[{}\begin{matrix}x+3=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-6\end{matrix}\right.\)
Vậy: x∈{-3;-6}
c) Ta có: 2x-36=0
⇔2(x-18)=0
mà 2≠0
nên x-18=0
hay x=18
Vậy: x=18
d) ĐKXĐ: x∉{-1;2}
Ta có: \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{-15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{-15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow x-2-5\left(x+1\right)=-15\)
\(\Leftrightarrow x-2-5x-5+15=0\)
\(\Leftrightarrow-4x+8=0\)
\(\Leftrightarrow-4\left(x-2\right)=0\)
mà -4≠0
nên x-2=0
hay x=2(ktm)
Vậy: x∈∅
ĐKXĐ : \(\orbr{\begin{cases}x\ne-3\\x\ne3\end{cases}}\)
\(\frac{x+3}{x-3}+\frac{36}{9-x^2}=\frac{x-3}{x+3}\)
\(\Rightarrow\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{-\left(36\right)}{x^2-9}-\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Rightarrow\left(x+3\right)^2-36-\left(x-3\right)^2=0\)
\(\Leftrightarrow x^2+6x+9-36-x^2+6x-9=0\)
\(\Leftrightarrow12x-36=0\Leftrightarrow x=3\)(LOẠI)
vậy tập nghiệm của phương trình là : S = rỗng
tk nka !!
\(\Leftrightarrow\dfrac{x}{27}-1+\dfrac{x}{24}-\dfrac{3}{2}+\dfrac{x}{30}=4\)
\(\Leftrightarrow x\left(\dfrac{1}{27}+\dfrac{1}{24}+\dfrac{1}{30}\right)=\dfrac{13}{2}\)
\(\Leftrightarrow x=\dfrac{\dfrac{13}{2}}{\dfrac{1}{27}+\dfrac{1}{24}+\dfrac{1}{30}}\)\(=\dfrac{7020}{121}\)
Vậy pt có tập nghiệm là S=\(\left\{\dfrac{7020}{121}\right\}\).
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\)
\(\Leftrightarrow\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
\(\Leftrightarrow\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
có : \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
\(\Leftrightarrow x-100=0\)
\(\Leftrightarrow x=100\)
\(pt\)\(\Leftrightarrow\)\(({x-90\over10}-1)+({x-76\over12}-2)+\)\(+({x-58\over14}-3)+({x-36\over16}-4)+({x-15\over17}-5)=0\)
\(\Leftrightarrow\)\(({x-100\over10})+({x-100\over12})+({x-100\over14})+({x-100\over16})\)
\(+({x-100\over17})=0\)
\(\Leftrightarrow\)\((x-100)({1\over10}+{1\over12}+{1\over14}+{1\over16}+{1\over17})=0\)
\(\Rightarrow\)\(x-100=0\)
\(\Rightarrow\)\(x=100\)
\(\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2028}{6}=0\\ \Leftrightarrow\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)+\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+2028}{6}-3\right)=0\\ \Leftrightarrow\frac{x+2010}{2008}+\frac{x+2010}{2007}+\frac{x+2010}{2006}+\frac{x+2010}{6}=0\\ \Leftrightarrow\left(x+2010\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}\right)=0\\ \Leftrightarrow x+2010=0\\ \Leftrightarrow x=-2010\)
Vậy pt có tập nghiệm \(S=\left\{-2010\right\}\)
a,\(\left(\frac{x}{x+1}\right)^2+\left(\frac{x}{x-1}\right)^2=90\)\(\Leftrightarrow\left(\frac{x}{x+1}\right)^2+2.\frac{x}{x+1}.\frac{x}{x-1}+\left(\frac{x}{x-1}\right)^2-\frac{2x^2}{x^2-1}=90\)
\(\Leftrightarrow\left(\frac{x}{x+1}+\frac{x}{x-1}\right)^2-\frac{2x^2}{x^2-1}=90\)\(\Leftrightarrow\left(\frac{x^2-x+x^2+x}{x^2-1}\right)^2-\frac{2x^2}{x^2-1}=90\)
\(\Leftrightarrow\left(\frac{2x^2}{x^2-1}\right)^2-\frac{2x^2}{x^2-1}-90=0\)\(\Leftrightarrow\left(\frac{2x^2}{x^2-1}-10\right)\left(\frac{2x^2}{x^2-1}+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{2x^2}{x^2-1}=10\\\frac{2x^2}{x^2-1}=-9\end{cases}\Leftrightarrow......}\)
b,Đặt \(\frac{x-2}{x+1}=a;\frac{x+2}{x-1}=b\Rightarrow ab=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x-1\right)}=\frac{x^2-4}{x^2-1}\)
Từ đó ta có phương trình:\(20a^2-5b^2+48ab=0\Leftrightarrow20a^2-2ab-5b^2+50ab=0\)
\(\Leftrightarrow2a\left(10a-b\right)+5b\left(10a-b\right)=0\Leftrightarrow\left(2a+5b\right)\left(10a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2a=-5b\\10a=b\end{cases}}\)
TH1:\(2a=-5b\Leftrightarrow\frac{2\left(x-2\right)}{x+1}=\frac{-5\left(x+2\right)}{x-1}\)\(\Rightarrow2\left(x-2\right)\left(x-1\right)=-5\left(x+2\right)\left(x+1\right)\)\(\Leftrightarrow2x^2-6x+4=-5x^2-15x-10\)\(\Leftrightarrow7x^2+9x+14=0\)
\(\Leftrightarrow7\left(x^2+\frac{9}{7}x+2\right)=0\Leftrightarrow7\left(x^2+2.\frac{9}{14}+\frac{81}{196}\right)+\frac{311}{28}=0\)
\(\Leftrightarrow7\left(x+\frac{9}{14}\right)^2+\frac{311}{28}=0\),vô lí
TH2:Tự làm nhé ,tương tự
\(\frac{5}{x^2+x-6}-\frac{2}{x^2+4x+3}=-\frac{3}{2x-1}\)
<=> \(\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=-\frac{3}{2x-1}\)
<=> 5(x + 1)(2x - 1) - 2(x - 2)(2x - 1) = -3(x - 2)(x + 3)(x + 1)
<=> 6x2 + 15x - 9 = -3x3 - 6x2 + 15x + 18
<=> 6x2 - 9 = -3x3 - 6x2 + 18
<=> 6x2 - 9 + 3x3 + 6x2 - 18 = 0
<=> 12x2 - 27 + 3x3 = 0
<=> 3(4x2 - 9 + x3) = 0
<=> 3(x2 + x - 3)(x + 3) = 0
<=> \(\orbr{\begin{cases}x=-3\\x=\frac{-1\pm\sqrt{13}}{2}\end{cases}}\)
DKXD \(x\ne\frac{1}{2};2;-1;3,;-3\)
<=> \(\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)
<=> \(\frac{1}{x+3}\left(\frac{5}{x-2}-\frac{2}{x+1}\right)=\frac{-3}{2x-1}\)
<=> \(\frac{1}{x+3}\left(\frac{5x+5-2x+4}{\left(x-2\right)\left(x+1\right)}\right)=\frac{-3}{2x-1}\)
<=> \(\frac{1}{x+3}\left(\frac{3\left(x+3\right)}{\left(x-2\right)\left(x+1\right)}\right)=\frac{3}{1-2x}\)
<=> \(\frac{3}{\left(x-2\right)\left(x+1\right)}=\frac{3}{1-2x}\)
<=> \(x^2-x-2=1-2x\)
<=> \(x^2+x-3=0\)
<=> \(\orbr{\begin{cases}x=\frac{-1+\sqrt{13}}{2}\\x=\frac{-1-\sqrt{13}}{2}\end{cases}}\)
chuc ban hoc tot
\(\frac{1}{x^2-2x+2}-1+\frac{2}{x^2-2x+3}-1+2-\frac{6}{x^2-2x+4}=0\)
\(\Leftrightarrow\frac{-x^2+2x-1}{x^2-2x+2}+\frac{-x^2+2x-1}{x^2-2x+3}+\frac{2\left(x^2-2x+1\right)}{x^2-2x+4}=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)\left(\frac{2}{x^2-2x+4}-\frac{1}{x^2-2x+2}-\frac{1}{x^2-2x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x+1=0\Rightarrow x=1\\\frac{2}{x^2-2x+4}-\frac{1}{x^2-2x+2}-\frac{1}{x^2-2x+3}=0\left(1\right)\end{matrix}\right.\)
Xét (1), đặt \(a=x^2-2x+3\) pt trở thành:
\(\frac{2}{a+1}-\frac{1}{a-1}-\frac{1}{a}=0\Leftrightarrow\frac{2\left(a-1\right)-\left(a+1\right)}{\left(a^2-1\right)}-\frac{1}{a}=0\)
\(\Leftrightarrow\frac{a-3}{a^2-1}=\frac{1}{a}\Leftrightarrow a^2-3a=a^2-1\Leftrightarrow3a=1\Rightarrow a=\frac{1}{3}\)
\(\Rightarrow x^2-2x+3=\frac{1}{3}\Leftrightarrow x^2-2x+1+\frac{5}{3}=0\)
\(\Leftrightarrow\left(x-1\right)^2+\frac{5}{3}=0\) (vô nghiệm)
Vậy \(x=1\)
\(\left(x-1\right)^2+\frac{5}{3}=0\) (ko thỏa đk )
ms đúng. chứ vẫn có no mà!!
\(\frac{90}{x}-\frac{36}{x-6}=2\) MTC = x (x-6) ĐK\(\hept{\begin{cases}x\ne0\\x\ne6\end{cases}}\)
\(\frac{90\left(x-6\right)}{x\left(x-6\right)}-\frac{36x}{x\left(x-6\right)}=\frac{2x\left(x-6\right)}{x\left(x-6\right)}\)
\(\frac{90x-540}{x\left(x-6\right)}-\frac{36x}{x\left(x-6\right)}-\frac{2x^2-12x}{x\left(x-6\right)}=0\)
\(90x-540-36x-2x^2+12x=0\)
\(-2x^2+66x-540=0\)
\(-2x^2+36x+30x-540=0\)
\(-2x\left(x-18\right)+30\left(x-18\right)=0\)
\(\left(x-18\right)\left(-2x+30\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-18=0\\-2x+30=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=18\\x=15\end{cases}}\)
vậy.....
ĐKXĐ: \(x\ne0;\) \(x\ne6\)
\(\frac{90}{x}-\frac{36}{x-6}=2\)
\(\Leftrightarrow\)\(\frac{90\left(x-6\right)}{x\left(x-6\right)}-\frac{36x}{x\left(x-6\right)}=2\)
\(\Leftrightarrow\)\(\frac{90x-540-36x}{x\left(x-6\right)}=2\)
\(\Leftrightarrow\)\(\frac{54x-540}{x\left(x-6\right)}=2\)
\(\Leftrightarrow\)\(54x-540=2x\left(x-6\right)\)
\(\Leftrightarrow\)\(27x-270=x\left(x-6\right)\)
mk lm đc có vậy thôi. tham khảo nha