Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(x+1)(x+3)=2x^2-2`
`<=>x^2+x+3x+3=2x^2-2`
`<=>x^2-4x-5=0`
`<=>x^2-5x+x-5=0`
`<=>x(x-5)+(x-5)=0`
`<=>(x-5)(x+1)=0`
`<=>` $\left[ \begin{array}{l}x=5\\x=-1\end{array} \right.$
Vậy `S={5,-1}`
Ta có: \(\left(x+1\right)\left(x+3\right)=2x^2-2\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2x^2+2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x+3-2\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3-2x+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(5-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
Vậy: S={-3;5}
ý 1: khi m=2 thì:
(m + 1 )x - 3 = x + 5
<=>(2+1)x-3=x+5
<=>3x-3=x+5
<=>2x=8
<=>x=4
Vậy khi m=2 thì x=4.
ý 2:
Để pt trên <=> với 2x-1=3x+2
Thì 2 PT phải có cùng tập nghiệm hay nghiệm của 2x-1=3x+2 cũng là nghiệm của PT (m + 1 )x - 3 = x + 5
Ta có: 2x-1=3x+2
<=>x=-3
=>(m+1).(-3)-3=(-3)+5
<=>-3m-3-3=2
<=>-3m=8
<=>m=-8/3
Vậy m=-8/2 thì 2 PT nói trên tương đương với nhau.
Nếu: \(x-1\ge0\) \(\Leftrightarrow\)\(x\ge1\) thì: \(\left|x-1\right|=x-1\)
Khi đó ta có: \(x^2-3x+2+x-1=0\)
\(\Leftrightarrow\) \(\left(x-1\right)^2=0\)
\(\Leftrightarrow\) \(x-1=0\)
\(\Leftrightarrow\) \(x=1\) (thỏa mãn)
Nếu \(x-1< 0\)\(\Leftrightarrow\)\(x< 1\) thì \(\left|x-1\right|=1-x\)
Khi đó ta có: \(x^2-3x+2+1-x=0\)
\(\Leftrightarrow\) \(x^2-4x+3=0\)
\(\Leftrightarrow\) \(\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\) \(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=3\end{cases}}\) (không thỏa mãn)
Vậy....
Lập bảng xét dấu :
x | 1 | ||
x-1 | - | 0 | + |
+) Nếu \(x\ge1\Leftrightarrow|x-1|=x-1\)
\(pt\Leftrightarrow x^2-3x+2+\left(x-1\right)=0\)
\(\Leftrightarrow x^2-3x+2+x-1=0\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\left(tm\right)\)
+) Nếu \(x< 1\Leftrightarrow|x-1|=1-x\)
\(pt\Leftrightarrow x^2-3x+2+\left(1-x\right)=0\)
\(\Leftrightarrow x^2-3x+2+1-x=0\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)-1=0\)
\(\Leftrightarrow\left(x-2\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=-\sqrt{1}\\x-2=\sqrt{1}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-2=-1\\x-2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\) ( loại )
Vậy phương trình có tập nghiệm \(S=\left\{1\right\}\)
a) \(x^2+9x+20=2\sqrt{3x+10}\)
\(\Leftrightarrow\left(x+4\right)^2\left(x+5\right)^2=4\left(3x+10\right)\)
\(\Leftrightarrow x^4+10x^3+25x^2+8x^3+80x^3+200x+16x^2+160x+400=12x+40\)
\(\Leftrightarrow x^4+18x^3+121x^2+360x+400=12x+40\)
\(\Leftrightarrow x^4+18x^2+121x^2+360x+400-12x-40=0\)
\(\Leftrightarrow\left(x^3+15x^2+76x+120\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^2+12x+40\right)\left(x+3\right)=0\)
Nhưng \(x^2+12x+40\ne0\), nên:
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy: nghiệm phương trình là {-3}
( 3x-1) ( x2+ 9) = (3x-1) (7x-10)
⇒( 3x-1) ( x2+ 9) - (3x-1) (7x-10) = 0
⇒( 3x-1) (( x2+ 9)-(7x-10)) = 0
⇒( 3x-1)(x2+9-7x+10)=0
⇒( 3x-1)(x2-7x+19)=0
⇒\(\left[{}\begin{matrix}3x-1=0\\x^2-7x+19=0\end{matrix}\right.\)
3x-1=0
⇒x=\(\dfrac{1}{3}\)
x2-7x+19=0
⇒ \(x^2-\dfrac{7}{2}x-\dfrac{7}{2}x+\left(\dfrac{7}{2}\right)^2+\dfrac{27}{4}=0\)
⇒ \(\left(x-\dfrac{7}{2}\right)^2+\dfrac{27}{4}=0\)
vì \(\left(x-\dfrac{7}{2}\right)^2\ge0\); \(\dfrac{27}{4}>0\)
⇒ \(\left(x-\dfrac{7}{2}\right)^2+\dfrac{27}{4}>0\)
⇒ x vô nghiệm
Vậy x= \(\dfrac{1}{3}\)
\(\left(3x-1\right)\left(x^2+9\right)=\left(3x-1\right)\left(7x-10\right)\\ \Leftrightarrow\left(3x-1\right)\left(x^2+9\right)-\left(3x-1\right)\left(7x-10\right)\\ \Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\\ \Leftrightarrow\left(3x-1\right)\left(x^2-4x-3x+12\right)=0\\ \Leftrightarrow\left(3x-1\right)\left[x\left(x-4\right)-3\left(x-4\right)\right]=0\\ \Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)
8x3+12x2+18x-12x2-18x-27=8x2-4x-27
8x3-8x2+4x=0
8x2.x-8x2+4x=0
x+4x=0
5x=0
=> x=0
nhớ k nha
a.
\(f\left(x\right)=x^3-x^2+3x-3=x^2\left(x-1\right)+3\left(x-1\right)=\left(x^2+3\right)\left(x-1\right)\)
f(x) > 0
<=> x2 + 3 và x - 1 cùng dấu
- \(\Leftrightarrow\hept{\begin{cases}x^2+3>0\\x-1>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>0\\x>1\end{cases}}\Leftrightarrow x>1\)
- \(\Leftrightarrow\hept{\begin{cases}x^2+3< 0\\x-1< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2< -3\\x< 1\end{cases}\Rightarrow}\) loại
Vậy x > 1
b.
\(g\left(x\right)=x^3+x^2+9x+9=x^2\left(x+1\right)+9\left(x+1\right)=\left(x^2+9\right)\left(x+1\right)\)
g(x) < 0
<=> x2 + 9 và x + 1 khác dấu
- \(\Leftrightarrow\hept{\begin{cases}x^2+9< 0\\x+1>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2< -9\\x>1\end{cases}\Rightarrow}\) loại
- \(\Leftrightarrow\hept{\begin{cases}x^2+9>0\\x+1< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2>-9\\x< -1\end{cases}}\Rightarrow\)loại
Vậy không tìm được x thỏa mãn yêu cầu đề.
Ta có: \(2x+10=3\left(x+3\right)\)
\(\Leftrightarrow2x+10=3x+9\)
\(\Leftrightarrow2x-3x=9-10\)
\(\Leftrightarrow-x=-1\)
\(\Leftrightarrow x=1\)
Vây: Tập nghiệm của phương trình là: \(S=\left\{1\right\}\)
_Chúc bạn học tốt_
2x + 10 = 3( x + 3)
\(\Leftrightarrow\) 2x + 10 = 3x + 9
\(\Leftrightarrow\) 2x - 3x = 9 - 10
\(\Leftrightarrow\) -x = -1
\(\Leftrightarrow\) x = 1
Vậy phương trình đã cho có nghiệm là x = 1