Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(\dfrac{1}{2}x\right)^2-\left(2x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(\dfrac{1}{2}x-2x+3\right)\left(\dfrac{1}{2}x+2x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(3-\dfrac{3}{2}x\right)\left(\dfrac{5}{2}x-3\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{\dfrac{6}{5}\right\}\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{4}{3}\\\left(3x+4\right)^2-\left(2x\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{4}{3}\\\left(5x+4\right)\left(x+4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow x=-\dfrac{4}{5}\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=12\\\left(5x-x+12\right)\left(5x+x-12\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=12\\\left(4x+12\right)\left(6x-12\right)=0\end{matrix}\right.\)
hay \(x\in\varnothing\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{10}{3}\\\left(2,5x-1,5x-5\right)\left(2,5x+1,5x+5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{10}{3}\\\left(x-5\right)\left(4x+5\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{5}{4};5\right\}\)
0,5x(x – 3) = (x – 3)(1,5x – 1)
⇔ 0,5x(x – 3) – (x – 3)(1,5x – 1) = 0
⇔ (x – 3).[0,5x – (1,5x – 1)] = 0
⇔ (x – 3)(0,5x – 1,5x + 1) = 0
⇔ (x – 3)(1 – x) = 0
⇔ x – 3 = 0 hoặc 1 – x = 0
+ x – 3 = 0 ⇔ x = 3.
+ 1 – x = 0 ⇔ x = 1.
Vậy phương trình có tập nghiệm S = {1; 3}.
1)\(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Leftrightarrow2\left(2x-5\right)\left(24+5x\right)=0\)
Vì 2≠0
nên \(\left[{}\begin{matrix}2x-5=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-24}{5}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{5}{2};\frac{-24}{5}\right\}\)
2) \(0,5x\left(x-3\right)=\left(x-3\right)\left(2,5x-4\right)\)
\(\Leftrightarrow0,5x\left(x-3\right)-\left(x-3\right)\left(2,5x-4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[0,5x-\left(2,5x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(0,5x-2,5x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(-2x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(4-2x\right)=0\)
\(\Leftrightarrow\left(x-3\right)\cdot2\cdot\left(2-x\right)=0\)
Vì 2≠0
nên \(\left[{}\begin{matrix}x-3=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Vậy: x∈{2;3}
3) \(4x^2-1=\left(2x+1\right)\left(3x-5\right)\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-\left(2x+1\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left[2x-1-\left(3x-5\right)\right]=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1-3x+5\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(4-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=4\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{-1}{2};4\right\}\)
4) \(\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)
\(\Leftrightarrow\left(2-3x\right)\left(x+11\right)-\left(3x-2\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left(2-3x\right)\left(x+11\right)+\left(2-3x\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left(2-3x\right)\left(x+11+2-5x\right)=0\)
\(\Leftrightarrow\left(2-3x\right)\left(13-4x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2-3x=0\\13-4x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\4x=13\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{13}{4}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{2}{3};\frac{13}{4}\right\}\)
a) Ta có: \(7-\left(2x+4\right)=-\left(x+4\right)\)
\(\Leftrightarrow7-2x-4=-x-4\)
\(\Leftrightarrow-2x+3+x+4=0\)
\(\Leftrightarrow-x+7=0\)
\(\Leftrightarrow-x=-7\)
hay x=7
Vậy: S={7}
b) Ta có: \(\dfrac{2+x}{5}-0.5x=\dfrac{1-2x}{4}+0.25\)
\(\Leftrightarrow\dfrac{4\left(2+x\right)}{20}-\dfrac{0.5x\cdot20}{20}=\dfrac{5\left(1-2x\right)}{20}+\dfrac{20\cdot0.25}{20}\)
\(\Leftrightarrow4\left(2+x\right)-10x=5\left(1-2x\right)+5\)
\(\Leftrightarrow8+4x-10x=5-10x+5\)
\(\Leftrightarrow-6x+8=-10x+10\)
\(\Leftrightarrow-6x+8+10x-10=0\)
\(\Leftrightarrow4x-2=0\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
d) Ta có: \(\dfrac{x-1}{59}+\dfrac{x-2}{58}+\dfrac{x-3}{57}=\dfrac{x-59}{1}+\dfrac{x-58}{2}+\dfrac{x-57}{3}\)
\(\Leftrightarrow\dfrac{x-1}{59}-1+\dfrac{x-2}{58}-1+\dfrac{x-3}{57}-1=\dfrac{x-59}{1}-1+\dfrac{x-58}{2}-1+\dfrac{x-57}{3}-1\)
\(\Leftrightarrow\dfrac{x-60}{59}+\dfrac{x-60}{58}+\dfrac{x-60}{57}=\dfrac{x-60}{1}+\dfrac{x-60}{2}+\dfrac{x-60}{3}\)
\(\Leftrightarrow\left(x-60\right)\left(\dfrac{1}{59}+\dfrac{1}{58}+\dfrac{1}{57}\right)-\left(x-60\right)\left(1+\dfrac{1}{2}+\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow\left(x-60\right)\left(\dfrac{1}{59}+\dfrac{1}{58}+\dfrac{1}{57}-1-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)
mà \(\dfrac{1}{59}+\dfrac{1}{58}+\dfrac{1}{57}-1-\dfrac{1}{2}-\dfrac{1}{3}\ne0\)
nên x-60=0
hay x=60
Vậy: S={60}
a) \(x\left(2x-9\right)=3x\left(x-5\right)\)
\(\Leftrightarrow x.\left(2x-9\right)-x.3\left(x-5\right)=0\)
\(\Leftrightarrow x.\left[\left(2x-9\right)-3\left(x-5\right)\right]=0\)
\(\Leftrightarrow x.\left(2x-9-3x+15\right)=0\)
\(\Leftrightarrow x.\left(6-x\right)=0\)
\(\Leftrightarrow S=\left\{0;6\right\}\)
b) \(0,5x\left(x-3\right)=\left(x-3\right)\left(1,5x-1\right)\)
\(\Leftrightarrow0,5x\left(x-3\right)-\left(x-3\right)\left(1,5x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left[0,5x-\left(1,5x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(0,5x-1,5x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(1-x\right)=0\)
\(+x-3=0\Rightarrow x=3\)
\(+1-x=0\Rightarrow x=1\)
\(\Rightarrow S=\left\{1;3\right\}\)
c) \(3x-15=2x\left(x-5\right)\)
\(\Leftrightarrow\left(3x-15\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(3-2x\right)\left(x-5\right)=0\)
\(\Rightarrow3-2x=\frac{3}{2}\Rightarrow x-5\Rightarrow x=5\)
\(\Rightarrow S=\left\{5;\frac{3}{2}\right\}\)
a)
\(x\left(2\times-9\right)=3\times\left(\times-5\right)\)
\(\text{⇔}x.\left(2\times-9\right)-x.3\left(x-5\right)=0\)
\(\text{⇔}x.[\left(2\times-9\right)-3\left(x-5\right)]=0\)
\(\text{⇔}x.\left(2x-9-3x+15\right)=0\)
\(\text{⇔}x.\left(6-x\right)=0\)
\(\text{⇔}x=0\) hoặc \(6-x=0+6-x=0\)
\(\text{⇔}x=6\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;6\right\}\) BIẾT MỖI CÂU A :))
a) \(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\)
\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3\left(2x+1\right)}{6}=\dfrac{x}{6}=\dfrac{6x}{6}\)
\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)
\(\Leftrightarrow2x-6x-3=x-6x\)
\(\Leftrightarrow2x-6x-x+6x=3\)
\(\Leftrightarrow x=3\)
\(S=\left\{3\right\}\)
b) \(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)
\(\Leftrightarrow\dfrac{4\left(2+x\right)}{20}-\dfrac{10x}{20}=\dfrac{5\left(1-2x\right)}{20}+\dfrac{5}{20}\)
\(\Leftrightarrow4\left(2+x\right)-10x=5\left(1-2x\right)+5\)
\(\Leftrightarrow8+4x-10x=5-10x+5\)
\(\Leftrightarrow4x-10x+10x=5+5-8\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
\(S=\left\{\dfrac{1}{2}\right\}\)
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
Ta có: |0,5x| = 0,5x khi 0,5x ≥ 0 ⇔ x ≥ 0
|0,5x| = -0,5x khi 0,5x < 0 ⇔ x < 0
Ta có: 0,5x = 3 – 2x ⇔ 0,5x + 2x = 3 ⇔ 2,5x = 3 ⇔ x = 1,2
Giá trị x = 1,2 thỏa mãn điều kiện x ≥ 0 nên 1,2 là nghiệm của phương trình.
-0,5x = 3 – 2x ⇔ -0,5x + 2x = 3 ⇔ 1,5x = 3 ⇔ x = 2
Giá trị x = 2 không thỏa mãn điều kiện x < 0 nên loại.
Vậy tập nghiệm của phương trình là S = {1,2}
<=>0,5x(x-3)-(x-3)(2,5x-4)=0
<=>(x-3)(0,5x-2,5x+4)=0
<=>(x-3)(-2x+4)=0
<=>(x-3)*2(4-x)=0
<=>x-3=0 hoặc 4-x=0
<=>x=3 hoặc x=4