Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x≠-9
Đầu bài → x².(x+9)²+81x²=40(x+9)²
<=> x²(x²+18x+81+81)=40(x+9)²
<=> x⁴+18x².(x+9)-40.(x+9)²=0
<=> [x²+20(x+9)][x²-2(x+9)]=0
\(\Leftrightarrow\)x²+20x+180=0 hoặc x²-2x+18=0...
\(\left(\frac{x}{x-1}\right)^2+\left(\frac{x}{x+1}\right)^2=\frac{10}{9}\Leftrightarrow\frac{x^2}{\left(x-1\right)^2}+\frac{x^2}{\left(x+1\right)^2}=\frac{10}{9}\)
\(\Leftrightarrow\frac{x^2\left(x+1\right)^2+x^2\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)^2}=\frac{10}{9}\Leftrightarrow\frac{x^2\left[\left(x+1\right)^2-\left(x-1\right)^2\right]}{\left[\left(x-1\right)\left(x+1\right)\right]^2}=\frac{10}{9}\)
\(\Leftrightarrow\frac{x^2\left(x+1-x+1\right)\left(x+1+x-1\right)}{\left(x^2-1\right)^2}=\frac{10}{9}\Leftrightarrow\frac{x^2.2.2x}{x^4-2x^2+1}=\frac{10}{9}\)
\(\Leftrightarrow36x^3=10x^4-20x^2+10\Leftrightarrow18x^3=5x^4-10x^2+5\Leftrightarrow5x^4-18x^3-10x^2\)+5=0
đến đây tự giải tiếp
ĐK:\(x\ne1;x\ne-1\)
\(pt\Leftrightarrow\frac{x^2}{\left(x-1\right)^2}+\frac{x^2}{\left(x+1\right)^2}=\frac{10}{9}\)
\(\Leftrightarrow\frac{9x^2\left(x+1\right)^2+9x^2\left(x-1\right)^2-10\left(x-1\right)^2\left(x+1\right)^2}{9\left(x-1\right)^2\left(x+1\right)^2}=0\)
\(\Leftrightarrow9x^2\left(x+1\right)^2+9x^2\left(x-1\right)^2-10\left(x-1\right)^2\left(x+1\right)^2=0\)
\(\Leftrightarrow9x^4+18x^3+9x^2+9x^4-18x^3+9x^2-10x^4+20x^2-10=0\)
\(\Leftrightarrow8x^4+38x^2-10=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=\frac{1}{4}\\x^2=5\left(l\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
\(\left(x^2+\frac{4}{x^2}\right)-4.\left(x-\frac{2}{x}\right)+9=0\)
Đặt \(x-\frac{2}{x}=t\) \(\Rightarrow x^2+\frac{4}{x^2}=t^2+4\)
Phương trình đã cho trở thành:
\(t^2+4-4t+9=0\)
\(\Leftrightarrow t^2-4t+13=0\)
\(\Delta=\left(-4\right)^2-4.1.13\)
\(=16-52=-36< 0\)
\(\Rightarrow\)Phương trình vô nghiệm
ĐK: xy\(\ne\)0
HPT đã cho tương đương: \(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}=5\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=9\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)=5\\\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=9\end{cases}}\)
Đặt \(\hept{\begin{cases}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)=S\\\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)=P\end{cases}}\)
Hệ trở thành:
\(\hept{\begin{cases}S^2-2P=9\\S=5\end{cases}\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{x}=2;y+\frac{1}{y}=3\\x+\frac{1}{x}=3;y+\frac{1}{y}=2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1;y=\frac{3\pm\sqrt{5}}{2}\\x=\frac{3\pm\sqrt{5}}{2};y=1\end{cases}}}\)
Vậy HPT đã cho có nghiệm (x;y)=\(\left(1;\frac{3\pm\sqrt{5}}{2}\right);\left(\frac{3\pm\sqrt{5}}{2};1\right)\)
\(\hept{\begin{cases}\left(x+y\right)\left(1+\frac{1}{xy}\right)=5\\\left(x^2+y^2\right)\left(1+\frac{1}{x^2y^2}\right)=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{x}=5\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)=5\\\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=13\end{cases}}\)
\(\left(x+\frac{1}{x};y+\frac{1}{y}\right)\rightarrow\left(a;b\right)\)
Hệ pt \(\Leftrightarrow\hept{\begin{cases}a+b=5\\a^2+b^2=13\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=5\\\left(a+b\right)^2-2ab=13\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=5\\ab=6\end{cases}}}\)
Tự làm nốt nhé
ĐKXĐ: \(x\ne-9\)
\(x^2-\frac{18x^2}{x+9}+\frac{\left(9x\right)^2}{\left(x+9\right)^2}+\frac{18x^2}{x+9}-40=0\)
\(\Leftrightarrow\left(x-\frac{9x}{x+9}\right)^2+\frac{18x^2}{x+9}-40=0\)
\(\Leftrightarrow\left(\frac{x^2}{x+9}\right)^2+\frac{18x^2}{x+9}-40=0\)
Đặt \(\frac{x^2}{x+9}=a\Rightarrow a^2+18a-40=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-20\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{x^2}{x+9}=2\\\frac{x^2}{x+9}=-20\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-18=0\\x^2+20x+180=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{19}\\x=1-\sqrt{19}\end{matrix}\right.\)