Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge15\)
Đặt \(\sqrt{x-15}=t\ge0\Rightarrow x=t^2+15\)
Pt trở thành:
\(t^2+15-t=17\Leftrightarrow t^2-t-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1< 0\left(loại\right)\\t=2\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-15}=2\Rightarrow x=19\)
Đk:\(-\sqrt{17}\le x\le\sqrt{17}\)
Đặt \(t=x+\sqrt{17-x^2}\left(t>0\right)\)
\(\Rightarrow t^2=17+2x\sqrt{17-x^2}\)
\(\Rightarrow x\sqrt{17-x^2}=\frac{t^2-17}{2}\)
thay vào pt
\(t+\frac{t^2-17}{2}=9\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=-7\left(loai\right)\\t=5\left(tm\right)\end{array}\right.\)
\(\Rightarrow x+\sqrt{17-x^2}=5\)
\(\Leftrightarrow\sqrt{17-x^2}=5-x\)
Với \(x< \sqrt{17}\) bình 2 vế ta có:
\(17-x^2=x^2-10x+25\)
\(\Leftrightarrow2x^2-10x+8=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=4\end{cases}\left(tm\right)}\)
dòng cuối là \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=4\end{array}\right.\)(thỏa mãn)
a) đk: \(1\le x\le5\)
\(\sqrt[4]{5-x}+\sqrt[4]{x-1}=\sqrt{2}\)
<=> \(\left(\sqrt[4]{5-x}+\sqrt[4]{x-1}\right)^4=\sqrt{2}^4\)
<=> \(5-x+x-1+4\sqrt[4]{5-x}^3.\sqrt[4]{x-1}+6\sqrt[4]{5-x}^2.\sqrt[4]{x-1}^2+4\sqrt[4]{5-x}.\sqrt[4]{x-1}^3=4\)
<=> \(\sqrt[4]{\left(5-x\right)\left(x-1\right)}.\left(2\sqrt[4]{5-x}^2+3\sqrt[4]{5-x}.\sqrt[4]{x-1}+2\sqrt[4]{x-1}^2\right)=0\)
<=> \(\left[{}\begin{matrix}\sqrt[4]{\left(5-x\right)\left(x-1\right)}=0\left(2\right)\\2\sqrt[4]{5-x}^2+3\sqrt[4]{\left(5-x\right)\left(x-1\right)}+2\sqrt[4]{x-1}^2=0\left(1\right)\end{matrix}\right.\)
Giải (2) <=> \(\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\left(tm\right)\)
Giải (1) : Đặt \(\sqrt[4]{5-x}=a;\sqrt[4]{x-1}=b\)(đk : a, b \(\ge\)0)
Khi đó, ta có: \(2a^2+3ab+2b^2=0\)
<=> 2(a2 + 3/2ab + 9/16b2) + \(\dfrac{7}{8}b^2=0\)
<=> \(2\left(a+\dfrac{3}{4}b\right)^2+\dfrac{7}{8}b^2=0\)
<=> \(\left\{{}\begin{matrix}a+\dfrac{3}{4}b=0\\b=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}\sqrt[4]{x-1}=0\\\sqrt[4]{5-x}=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)(vô lí)
sao cách này rắc rối quá vậy , có cách nào đơn giản hơn không? mà pt này rõ ràng có nghiệm chứ có phải vô nghiệm đâu
a: =>\(x\cdot\left(\sqrt{3}-1\right)=16\)
=>\(x=\dfrac{16}{\sqrt{3}-1}=8\left(\sqrt{3}+1\right)\)
b: =>(x-căn 15)^2=0
=>x-căn 15=0
=>x=căn 15
Lời giải:
ĐKXĐ: $x\geq \sqrt{15}$
Đặt $\sqrt{x^2-15}=a; \sqrt{x-3}=b(a,b\geq 0)$
PT đã cho trở thành:
$a^2+b^2+1=ab+a+b$
$\Leftrightarrow 2a^2+2b^2+2=2ab+2a+2b$
$\Leftrightarrow 2a^2+2b^2+2-2ab-2a-2b=0$
$\Leftrightarrow (a^2+b^2-2ab)+(a^2-2a+1)+(b^2-2b+1)=0$
$\Leftrightarrow (a-b)^2+(a-1)^2+(b-1)^2=0$
Thấy rằng $(a-b)^2\geq 0; (a-1)^2\geq 0; (b-1)^2\geq 0$ với mọi $a,b\geq 0$
Do đó để tổng của chúng bằng $0$ thì $(a-b)^2=(a-1)^2=(b-1)^2=0$
$\Rightarrow a=b=1$
$\Rightarrow a^2=b^2=1$
$\Rightarrow x^2-15=x-3=1$
$\Rightarrow x=4$ (thỏa mãn)
Vậy.......
\(3x-2=\sqrt[]{x^2+15}-\sqrt[]{x^2+8}=\dfrac{7}{\sqrt[]{x^2+15}+\sqrt[]{x^2+8}}>0\)
\(\Rightarrow x>\dfrac{2}{3}\)
\(\sqrt[]{x^2+15}-4=3x-3+\sqrt[]{x^2+8}-3\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt[]{x^2+15}+4}=3\left(x-1\right)+\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt[]{x^2+8}+3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\dfrac{x+1}{\sqrt[]{x^2+15}+4}=3+\dfrac{x+1}{\sqrt[]{x^2+8}+3}\left(1\right)\end{matrix}\right.\)
Do \(x>\dfrac{2}{3}\Rightarrow x+1>0\Rightarrow\dfrac{x+1}{\sqrt[]{x^2+15}+4}< \dfrac{x+1}{\sqrt[]{x^2+8}+3}\)
\(\Rightarrow\) (1) vô nghiệm hay pt có nghiệm duy nhất \(x=1\)
\(x-\sqrt{x-15}=17\)
\(\Leftrightarrow x-15=289-34x+x^2\)
\(\Leftrightarrow-x^2+35x-304=0\)
Giai delta ta được : \(x=19;16\)
Thử : \(16-\sqrt{16-15}=17\Leftrightarrow15\ne17\)=)) x = 16 ko thỏa mãn
\(19-\sqrt{19-15}=17\Leftrightarrow19-2=17\Leftrightarrow17=17\)=)) thỏa mãn
Vậy x = 19
\(x-\sqrt{x-15}=17\)
\(\Leftrightarrow x-17=\sqrt{x-15}\)
ĐKXĐ : x ≥ 17
Bình phương hai vế
\(\Leftrightarrow x^2-34x+289=x-15\)
\(\Leftrightarrow x^2-34x+289-x+15=0\)
\(\Leftrightarrow x^2-35x+304=0\)(*)
\(\Delta=b^2-4ac=\left(-35\right)^2-4\cdot1\cdot304=9\)
\(\Delta>0\)nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{35+\sqrt{9}}{2}=19\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{35-\sqrt{9}}{2}=16\end{cases}}\)
So với ĐKXĐ ta thấy x = 19 thỏa mãn
Vậy phương trình có nghiệm duy nhất là x = 19