Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}\sqrt{x^2+x+25}=a\ge0\\\sqrt{x^2+x+16}=b\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b=9\\a^2-b^2=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=9\\\left(a+b\right)\left(a-b\right)=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=9\\a-b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=5\\b=4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x^2+x+25}=5\\\sqrt{x^2+x+16}=4\end{cases}}\)
\(\Rightarrow x^2+x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Đặt \(t=x^2+x+16>0\)
pt trên đc viết lại thành
\(\sqrt{t+9}+\sqrt{t}=9\)
\(\Leftrightarrow t+9+t+2\sqrt{t\left(t+9\right)}=81\)
\(\Leftrightarrow2\sqrt{t\left(t+9\right)}=72-t\)
\(\Leftrightarrow\hept{\begin{cases}72-t>0\\4t\left(t+9\right)=\left(72-t\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}t< 72\\3t^2+180t-5184=0\end{cases}}\)
\(\Leftrightarrow t=-30+6\sqrt{73}\) (vì t > 0)
Thử lại thấy ko thỏa mãn
Vậy pt vô nghiệm.
=>\(\sqrt{\left(x+3\right)^2}\)+ \(\sqrt{\left(x+4\right)^2}\)+\(\sqrt{\left(x+5\right)^2}\)=9x
=> x + 3 + x + 4 + x + 5 = 9x
=> - 6x = - 12
=> x=2
Ủa sao phá đc trị tuyệt đối hay v bạn? (căn a^2 = trị tuyệt đối của a )
Ta có: \(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)
\(\Rightarrow\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\)
\(\Rightarrow x-3+x+5=8\)
\(\Rightarrow2x=6\Rightarrow x=3\)
\(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\Leftrightarrow\left|x-3\right|+\left|x+5\right|=8\) (1)
Nếu \(x< -5\) thì (1) trở thành:
\(3-x+\left(-x-5\right)=8\Leftrightarrow-2x-2=8\Leftrightarrow x=-5\) (loại)
-Nếu \(-5\le x< 3\) thì (1) trở thành:
\(3-x+x+5=8\Leftrightarrow8=8\)
-Nếu \(x>3\) thì (1) trở thành:
\(x-3+x+5=8\Leftrightarrow2x+2=8\Leftrightarrow x=3\) (thỏa mãn)
Vậy \(-5\le x\le3\)
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
\(x-9\sqrt{x}+14=0\Leftrightarrow x-2\sqrt{x}-7\sqrt{x}+14=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-7\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\\sqrt{x}-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=49\end{cases}}}\)
Vậy x = 4 hoặc x = 49
\(\sqrt{x^2-10x+25}=7-2x\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\)
\(\Leftrightarrow\left|x-5\right|=7-2x\)(1)
Nếu \(x-5\ge0\Rightarrow x\ge5\) thì (1) trở thành: x-5=7-2x <=> 3x=12 <=> x=4 (loại)
Nếu x - 5 < 0 => x < 5 thì (1) trở thành: -(x-5)=7-2x <=> -x+5=7-2x <=> x=2 (nhận)
Vậy x = 2
\(\sqrt{x-2}+\sqrt{2-x}=0\)
\(\Leftrightarrow\left(\sqrt{x-2}+\sqrt{2-x}\right)^2=0\)
\(\Leftrightarrow x-2+2\sqrt{\left(x-2\right)\left(2-x\right)}+2-x=0\)
\(\Leftrightarrow2\sqrt{4x-x^2-4}=0\)
\(\Leftrightarrow\left(\sqrt{4x-x^2-4}\right)^2=0\)
\(\Leftrightarrow4x-x^2-4=0\)
giải phương trình bình thường
\(\sqrt{x^2+x+1}=x+2\)
\(\Leftrightarrow\left(\sqrt{x^2}+x+1\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow x^2+x+1=x^2+4x+4\)
\(\Leftrightarrow-3x=3\)
\(\Leftrightarrow x=-1\)
Vậy x = -1
1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2
bình phương 2 vế ?
a, \(\sqrt{x-2}+\sqrt{x-3}=5\left(ĐK:x\ge3\right)\)
\(< =>x+\sqrt{\left(x-2\right)\left(x-3\right)}=15\)
\(< =>\left(x-2\right)\left(x-3\right)=\left(15-x\right)\left(15-x\right)\)
\(< =>x^2-5x+6=x^2-30x+225\)
\(< =>25x-219=0\)
\(< =>x=\frac{219}{25}\)
Điều kiện: mọi \(x\in R\)
Ta có \(\sqrt{x^2+x+25}=\sqrt{x^2+x+9}+2\)
\(\Leftrightarrow x^2+x+25=x^2+x+9+4.\sqrt{x^2+x+9}+4\)
\(\Leftrightarrow\sqrt{x^2+x+9}=3\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)