Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2020-x}+\sqrt{2023-x}+\sqrt{2028-x}=6\)\(\left(x\le2020\right)\)
\(\Leftrightarrow\sqrt{2020-x}-1+\sqrt{2023-x}-2+\sqrt{2020-x}-3=0\)
\(\Leftrightarrow\frac{\left(\sqrt{2020-x}-1\right)\left(\sqrt{2020-x}+1\right)}{\sqrt{2020-x}+1}\) \(+\frac{\left(\sqrt{2023-x}-2\right)\left(\sqrt{2023-x}+2\right)}{\sqrt{2023-x}+2}\)\(+\frac{\left(\sqrt{2028-x}-3\right)\left(\sqrt{2028-x}+3\right)}{\left(\sqrt{2028-x}+3\right)}\)=0
\(\Leftrightarrow\frac{2019-x}{\sqrt{2020-x}+1}+\frac{2019-x}{\sqrt{2023-x}+2}+\frac{2019-x}{\left(\sqrt{2028-x}+3\right)}\)=0
\(\Leftrightarrow\left(2019-x\right)\left(\frac{1}{\sqrt{2020-x}+1}+\frac{1}{\sqrt{2023-x}+2}+\frac{1}{\sqrt{2028-x}+3}\right)\)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=2019\left(tm\right)\\\frac{1}{\sqrt{2020-x}+1}+\frac{1}{\sqrt{2023-x}+2}+\frac{1}{\sqrt{2028-x}+3}=0\left(2\right)\end{matrix}\right.\)
vì \(\sqrt{2020-x}\ge0\Rightarrow\frac{1}{\sqrt{2020-x}+1}>0\)
cmtt: \(\frac{1}{\sqrt[]{2023-x}+2}>0\)
\(\frac{1}{\sqrt{2028-x}+3}>0\)
=>\(\frac{1}{\sqrt{2020-x}+1}+\frac{1}{\sqrt{2023-x}+2}+\frac{1}{\sqrt{2028-x}+3}>0\)(3)
từ (2) và (3)=> vô lý
vậy x=2019 là nghiệm của phương trình
\(\sqrt{2023-\sqrt{x}}=2023-x\left(ĐK:x\ge0\right)\)
Đặt \(t=\sqrt{x}\left(t\le2023\right)\)
Pt trở thành : \(\sqrt{2023-t}=2023-t^2\)
\(\Leftrightarrow2023-t=\left(2023-t^2\right)^2\)
\(\Leftrightarrow t^4-4046t+4092529=2023-t\)
\(\Leftrightarrow t^4-4045+4090506=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2023\left(n\right)\\t=2022\left(n\right)\end{matrix}\right.\)
+) Với \(t=2023\Rightarrow x^2=2023\Rightarrow x=\pm17\sqrt{7}\)
+) Với \(t=2022\Rightarrow x^2=2022\Leftrightarrow x=\pm\sqrt{2022}\)
Vì \(x\ge0\) \(\Rightarrow x\in\left\{17\sqrt{7};\sqrt{2022}\right\}\)
Vậy \(S=\left\{17\sqrt{7};\sqrt{2022}\right\}\)
ĐKXĐ: x > y
Ta có hệ \(\hept{\begin{cases}\sqrt{x+y}+\sqrt{x-y}=4\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+2\sqrt{\left(x+y\right)\left(x-y\right)}+x-y=16\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x^2-y^2}=16-2x\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x^2-y^2}=8-x\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}8-x\ge0\\x^2-y^2=\left(8-x\right)^2\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le8\\x^2-y^2=64-16x+x^2\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le8\\-y^2=64-16x\\x^2+y^2=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le8\\y^2=16x-64\\x^2+y^2-y^2=18-16x+64\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le8\left(1\right)\\y^2=16x-64\left(2\right)\\x^2+16x-82=0\left(3\right)\end{cases}}\)
Giải (3) \(x^2+16x-82=0\)
\(\Leftrightarrow x^2+16x+64=146\)
\(\Leftrightarrow\left(x+8\right)^2=146\)
\(\Leftrightarrow x+8=\pm\sqrt{146}\)
\(\Leftrightarrow x=\pm\sqrt{146}-8\)(Thỏa mãn (1) )
Thay vào (2) tìm được y rồi so sánh ĐKXĐ => KL
@Fabulous Joker cảm ơn ông nhiều lắm
mai tôi phải nộp bài r
\(x-4\sqrt{x}-6=0\)
\(< =>\sqrt{x}^2-4\sqrt{x}-6=0\)
\(\left(a=1;b=-4;b'=-2;c=-6\right)\)
\(\Delta'=b'^2-ac\)
\(=\left(-2\right)^2-1.\left(-6\right)\)
\(=4+6\)
\(=10>0\)
\(\sqrt{\Delta'}=\sqrt{10}\)
Phương trình có 2 nghiệm phân biệt
\(\sqrt{x_1}=\frac{2+\sqrt{10}}{1}=2+\sqrt{10}\)
\(\sqrt{x_2}=\frac{2-\sqrt{10}}{1}=2-\sqrt{10}\)
Với \(\sqrt{x_1}=2+\sqrt{10}\) suy ra \(x_1=\left(2+\sqrt{10}\right)^2=14+4\sqrt{10}\)
Với \(\sqrt{x_2}=2-\sqrt{10}\) suy ra \(x_2=\left(2-\sqrt{10}\right)^2=14-4\sqrt{10}\)
HỌC TỐT !!!
Áp dụng BĐT AM-GM ta có:
\(VT=\sqrt{x^2+x-5}+\sqrt{-x^2+x+3}\)
\(\le\frac{x^2+x-5+1}{2}+\frac{-x^2+x+3+1}{2}\)
\(=\frac{x^2+x-4}{2}+\frac{-x^2+x+4}{2}=x\)
\(\Rightarrow x\le x^2-3x+2\Leftrightarrow-\left(x-2\right)^2+2\le0\)
Khi \(x=2\pm\sqrt{2}\)
đang vội nên mk làm tắt nha . đk x>=-5/4
\(\Leftrightarrow2\left(x+1\right)\)\(.\left[\left(x+2\right)-\sqrt{4x+5}\right]+2 \left(x+5\right)\sqrt{x+3}\left(\sqrt{x+3}-2\right)+\)\(2x^2+6x-8=0\)
\(\Leftrightarrow\frac{2\left(x+1\right)^2\left(x-1\right)}{x+2+\sqrt{4x+5}}+\frac{2\left(x+5\right)\left(x-1\right)\sqrt{x+3}}{\sqrt{x+3}+2}+2\left(x-1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\frac{2\left(x+1\right)^2}{x+2+\sqrt{4x+5}}+\frac{2\left(x+5\right)\sqrt{x+3}}{\sqrt{x+3}+2}+2\left(x+4\right)\right]=0\)
de thấy bt trong ngoặc dương suy ra x=1 là no
Xét :\(VT^2=2020-x+x-2018+2\sqrt{\left(2012-x\right)\left(x-2018\right)}\)
\(=2+2\sqrt{\left(2012-x\right)\left(x-2018\right)}\)
Áp dụng bđt AM - GM ta có : \(2\sqrt{\left(2012-x\right)\left(x-2018\right)}\le2012-x+x-2018=2\)
\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)(1)
Xét \(VP=x^2-4038x+4076363=\left(x^2-4038x+4076361\right)+2\)
\(=\left(x-2019\right)^2+2\ge2\) (2)
Từ (1);(2) \(\Rightarrow VT\le2\le VP\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2020-x=x-2018\\\left(x-2019\right)^2=0\end{cases}\Rightarrow x=2019\left(TM\right)}\)
Vậy nghiệm của PT là \(S=\left\{2019\right\}\)
Nam 9A đây hửm pk ta???
hưm